adding projects
This commit is contained in:
commit
1e4f859250
56
projects/CountDown/TrumpCountdown.ino
Normal file
56
projects/CountDown/TrumpCountdown.ino
Normal file
@ -0,0 +1,56 @@
|
||||
/* SevSeg Counter Example
|
||||
|
||||
Copyright 2017 Dean Reading
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
|
||||
This example demonstrates a very simple use of the SevSeg library with a 4
|
||||
digit display. It displays a counter that counts up, showing deci-seconds.
|
||||
*/
|
||||
|
||||
#include "SevSeg.h"
|
||||
SevSeg sevseg; //Instantiate a seven segment controller object
|
||||
|
||||
void setup() {
|
||||
byte numDigits = 4;
|
||||
byte digitPins[] = {2, 3, 4, 5};
|
||||
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12, 13};
|
||||
bool resistorsOnSegments = false; // 'false' means resistors are on digit pins
|
||||
byte hardwareConfig = COMMON_CATHODE; // See README.md for options
|
||||
bool updateWithDelays = false; // Default. Recommended
|
||||
bool leadingZeros = false; // Use 'true' if you'd like to keep the leading zeros
|
||||
|
||||
sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments, updateWithDelays, leadingZeros);
|
||||
sevseg.setBrightness(10);
|
||||
pinMode(A5, INPUT_PULLUP);
|
||||
pinMode(A1, INPUT_PULLUP);
|
||||
// Serial.begin(9600); // debugging
|
||||
}
|
||||
float lastReset = 0.0;
|
||||
void loop() {
|
||||
unsigned long runMillis= millis();
|
||||
float actualDays = runMillis/86400000.0;
|
||||
float days = actualDays - lastReset;
|
||||
sevseg.setNumber(days, 3);
|
||||
sevseg.refreshDisplay(); // Must run repeatedly
|
||||
// Serial.println(actualDays,5); // debugging
|
||||
// Serial.println(digitalRead(A1)); // debugging
|
||||
if(!digitalRead(A5)){
|
||||
lastReset = actualDays;
|
||||
}
|
||||
if(!digitalRead(A1)){
|
||||
lastReset = actualDays;
|
||||
}
|
||||
}
|
||||
|
||||
/// END ///
|
62
projects/CountUp/TrumpCountUp.ino
Normal file
62
projects/CountUp/TrumpCountUp.ino
Normal file
@ -0,0 +1,62 @@
|
||||
/* SevSeg Counter Example
|
||||
|
||||
Copyright 2017 Dean Reading
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
|
||||
This example demonstrates a very simple use of the SevSeg library with a 4
|
||||
digit display. It displays a counter that counts up, showing deci-seconds.
|
||||
*/
|
||||
|
||||
#include "SevSeg.h"
|
||||
SevSeg sevseg; //Instantiate a seven segment controller object
|
||||
|
||||
void setup() {
|
||||
byte numDigits = 4;
|
||||
byte digitPins[] = {2, 3, 4, 5};
|
||||
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12, 13};
|
||||
bool resistorsOnSegments = false; // 'false' means resistors are on digit pins
|
||||
byte hardwareConfig = COMMON_CATHODE; // See README.md for options
|
||||
bool updateWithDelays = false; // Default. Recommended
|
||||
bool leadingZeros = false; // Use 'true' if you'd like to keep the leading zeros
|
||||
|
||||
sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments, updateWithDelays, leadingZeros);
|
||||
sevseg.setBrightness(10);
|
||||
pinMode(A5, INPUT_PULLUP);
|
||||
pinMode(A1, INPUT_PULLUP);
|
||||
// Serial.begin(9600); // debugging
|
||||
}
|
||||
|
||||
int decPlaces = 3;
|
||||
float lastReset = 0; // optional button reset - orange wire connected to A1, or programmable button on A5
|
||||
|
||||
void loop() {
|
||||
unsigned long runMillis= millis();
|
||||
float actualDays = runMillis/86400000.0;
|
||||
float days = actualDays - lastReset;
|
||||
sevseg.setNumber(days, decPlaces);
|
||||
sevseg.refreshDisplay(); // Must run repeatedly
|
||||
// Serial.println(actualDays,5); // debugging
|
||||
// Serial.println(digitalRead(A1)); // debugging
|
||||
if(!digitalRead(A1)){lastReset -= 0.001;}
|
||||
// if(!digitalRead(A5)){lastReset = actualDays;}
|
||||
// program A5 as decimal place changer
|
||||
if(!digitalRead(A5)){
|
||||
// if(decPlaces == 2){decPlaces = 3;}
|
||||
// if(decPlaces == 3){decPlaces = 2;}
|
||||
decPlaces = (decPlaces + 1)%2 + 2;
|
||||
delay(250);
|
||||
}
|
||||
}
|
||||
|
||||
/// END ///
|
162
projects/Workstation/Workstation.ino
Normal file
162
projects/Workstation/Workstation.ino
Normal file
@ -0,0 +1,162 @@
|
||||
//YWROBOT
|
||||
//Compatible with the Arduino IDE 1.0
|
||||
//Library version:1.1
|
||||
#include <Wire.h>
|
||||
#include <LiquidCrystal_I2C.h>
|
||||
#include <TM1638.h>
|
||||
LiquidCrystal_I2C lcd(0x27,20,4); // set the LCD address to 0x27 for a 16 chars and 2 line display
|
||||
|
||||
TM1638 module(3, 2, 4);
|
||||
#define NO_MODULES 1
|
||||
TM1638* modules[NO_MODULES] = {
|
||||
&module
|
||||
};
|
||||
byte modes[NO_MODULES];
|
||||
unsigned long trump_reset;
|
||||
unsigned long startTime;
|
||||
unsigned long study_reset;
|
||||
|
||||
const int buttondelay = 150; // millis delay for button bounceback
|
||||
const int backlight_pin = 7;
|
||||
const int rPin = 10; // RGB pins
|
||||
const int gPin = 9;
|
||||
const int bPin = 8;
|
||||
int rval = 0;
|
||||
int gval = 0;
|
||||
int bval = 0;
|
||||
bool backlight_status = 1;
|
||||
int daysSinceLastReset = 0;
|
||||
int studySessions = 0;
|
||||
|
||||
|
||||
void update(TM1638* module, byte* mode) {
|
||||
byte buttons = module->getButtons();
|
||||
unsigned long runningSecs = (millis() - startTime) / 1000;
|
||||
float studyMins = (millis() - study_reset) / (1000.0*60);
|
||||
float trumpDays = (millis() - trump_reset) / (1000.0*60*60*24);
|
||||
|
||||
if(module->getButtons() == 128 ){
|
||||
backlight_status = !backlight_status;
|
||||
digitalWrite(backlight_pin, backlight_status);
|
||||
delay(buttondelay);
|
||||
// module->clearDisplay();
|
||||
}
|
||||
|
||||
// button pressed - change mode
|
||||
if (buttons != 0) {
|
||||
*mode = buttons;
|
||||
}
|
||||
|
||||
// STUDY TIMER ON LCD
|
||||
lcd.setCursor(6,3);
|
||||
lcd.print(int(studyMins));
|
||||
lcd.setCursor(3,3);
|
||||
lcd.print(studySessions);
|
||||
lcd.setCursor(0,3);
|
||||
lcd.print(daysSinceLastReset);
|
||||
|
||||
module->setLEDs(*mode);
|
||||
switch (*mode) {
|
||||
|
||||
case 1 << 0: // STUDY TIMER SUMMARY
|
||||
char s[8];
|
||||
studySessions = int(studyMins/90);
|
||||
daysSinceLastReset = studySessions%16;
|
||||
sprintf(s, "%2d.%2d.%2d", daysSinceLastReset, studySessions, int(studyMins)%90 );
|
||||
module->setDisplayToString(s);
|
||||
break;
|
||||
|
||||
case 1 << 1:
|
||||
module->setDisplayToDecNumber(10000*studyMins, 1 << 4, false);
|
||||
break;
|
||||
|
||||
case 1 << 2:
|
||||
module->setDisplayToDecNumber(1000000*trumpDays, 1 << 6, false);
|
||||
break;
|
||||
|
||||
case 1 << 3:
|
||||
module->setDisplayToDecNumber(runningSecs, 1 << 5, false);
|
||||
break;
|
||||
|
||||
case 1 << 4: // Button 5
|
||||
module->clearDisplay();
|
||||
module->clearDisplayDigit((runningSecs - 1) % 8, 0);
|
||||
module->setDisplayDigit(runningSecs % 8, runningSecs % 8, 0);
|
||||
break;
|
||||
|
||||
case 1 << 5: // reset study timer
|
||||
study_reset = millis();
|
||||
*mode = 1 << 1;
|
||||
delay(buttondelay);
|
||||
module->clearDisplay();
|
||||
break;
|
||||
|
||||
case 1 << 6: // reset trump timer
|
||||
trump_reset = millis();
|
||||
*mode = 1 << 2;
|
||||
delay(buttondelay);
|
||||
module->clearDisplay();
|
||||
break;
|
||||
|
||||
case 1 << 7: // Button 8, reset backlight
|
||||
module->clearDisplay();
|
||||
break;
|
||||
|
||||
case 65:
|
||||
module->setDisplayToError();
|
||||
break;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void setup()
|
||||
{
|
||||
for (int i = 0; i < NO_MODULES; i++) {
|
||||
modules[i]->setupDisplay(true, 7);
|
||||
modes[i] = 0;
|
||||
}
|
||||
|
||||
startTime = millis();
|
||||
study_reset = millis();
|
||||
trump_reset = millis();
|
||||
|
||||
lcd.init(); // initialize the lcd
|
||||
pinMode(backlight_pin, OUTPUT);
|
||||
digitalWrite(backlight_pin, backlight_status);
|
||||
// Print a message to the LCD.
|
||||
|
||||
lcd.backlight();
|
||||
lcd.setCursor(2,0);
|
||||
lcd.print("ACTION EXPRESSES");
|
||||
lcd.setCursor(6,1);
|
||||
lcd.print("PRIORITY.");
|
||||
lcd.setCursor(15,2);
|
||||
lcd.print("ABK");
|
||||
}
|
||||
|
||||
|
||||
void loop()
|
||||
{
|
||||
|
||||
for (int i = 0; i < NO_MODULES; i++) {
|
||||
update(modules[i], &modes[i]);
|
||||
}
|
||||
// RGB LED
|
||||
rval = max( rval + rand()%3 - 1, 0); // markov chain
|
||||
gval = max( gval + rand()%3 - 1, 0);
|
||||
bval = max( bval + rand()%3 - 1, 0);
|
||||
rval = min(rval, 255);
|
||||
gval = min(gval, 255);
|
||||
bval = min(bval, 255);
|
||||
|
||||
lcd.setCursor(10,2);
|
||||
lcd.print(rval);
|
||||
digitalWrite(rPin, 0.6*rval);
|
||||
lcd.setCursor(5,2);
|
||||
lcd.print(gval);
|
||||
digitalWrite(gPin, 0.3*gval);
|
||||
lcd.setCursor(0,2);
|
||||
digitalWrite(bPin, 0.1*bval);
|
||||
lcd.print(bval);
|
||||
}
|
347
projects/_4to7pins/_4to7pins.ino
Normal file
347
projects/_4to7pins/_4to7pins.ino
Normal file
@ -0,0 +1,347 @@
|
||||
/*
|
||||
This Arduino code for "4-digit-7-segment-led-display" (KYX-5461AS).
|
||||
* This code can display one Number in all 4 digit!
|
||||
* This code can display 4 Numbers each on in specific digit
|
||||
* This code can also make a Number Countdown (Timers).
|
||||
|
||||
author : Oussama Amri (@amriunix)
|
||||
website : ithepro.com
|
||||
*/
|
||||
|
||||
//display pins
|
||||
int segA = 5; // >> 11
|
||||
int segB = 13; // >> 7
|
||||
int segC = 10; // >> 4
|
||||
int segD = 8; // >> 2
|
||||
int segE = 7; // >> 1
|
||||
int segF = 4; // >> 10
|
||||
int segG = 11; // >> 5
|
||||
int segPt = 9; // >> 3
|
||||
//------------//
|
||||
|
||||
//display digit
|
||||
int d1 = 6; // >> 12
|
||||
int d2 = 3; // >> 9
|
||||
int d3 = 2; // >> 8
|
||||
int d4 = 12; // >> 6
|
||||
//------------//
|
||||
|
||||
int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>
|
||||
int mydelay = 3000; // 50 is about one second, 3000 a minute
|
||||
int i=0;
|
||||
|
||||
//=============================================//
|
||||
//init all pin used
|
||||
void setup() {
|
||||
pinMode(2, OUTPUT);
|
||||
pinMode(3, OUTPUT);
|
||||
pinMode(4, OUTPUT);
|
||||
pinMode(5, OUTPUT);
|
||||
pinMode(6, OUTPUT);
|
||||
pinMode(7, OUTPUT);
|
||||
pinMode(8, OUTPUT);
|
||||
pinMode(9, OUTPUT);
|
||||
pinMode(10, OUTPUT);
|
||||
pinMode(11, OUTPUT);
|
||||
pinMode(12, OUTPUT);
|
||||
pinMode(13, OUTPUT);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=============================================//
|
||||
void loop() {
|
||||
downup(0,20,9,0); // numbers above 19 display as blank.
|
||||
//all(8);
|
||||
//writeN(1,9,0,4);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=============================================//
|
||||
//Write a Number - writeN(1,9,9,0) -> 1990
|
||||
void writeN(int a,int b,int c,int d){
|
||||
selectDwriteL(1,a);
|
||||
selectDwriteL(2,b);
|
||||
selectDwriteL(3,c);
|
||||
selectDwriteL(4,d);
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
//Make a Number Number Countdown (Timers).
|
||||
void downup(int a,int b,int c,int d){
|
||||
while (a != -1) {
|
||||
while(b != -1){
|
||||
while(c != -1){
|
||||
while (d != -1) {
|
||||
while (i<mydelay) { // i here is like a timer ! because we can't use delay function
|
||||
selectDwriteL(1,a);
|
||||
selectDwriteL(2,b);
|
||||
selectDwriteL(3,c);
|
||||
selectDwriteL(4,d);
|
||||
i++;
|
||||
}
|
||||
i=0;
|
||||
d--;
|
||||
}
|
||||
d=9;
|
||||
c--;
|
||||
}
|
||||
c=9;
|
||||
a++; // iterate the first digit to count up while the last two digits count down.
|
||||
//b--; // this uncommented leaves the second digit blank
|
||||
}
|
||||
a=9;
|
||||
//a++;
|
||||
//a--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=============================================//
|
||||
//Make a Number Number Countdown (Timers).
|
||||
void down(int a,int b,int c,int d){
|
||||
while (a != -1) {
|
||||
while(b != -1){
|
||||
while(c != -1){
|
||||
while (d != -1) {
|
||||
while (i<mydelay) { // i here is like a timer ! because we can't use delay function
|
||||
selectDwriteL(1,a);
|
||||
selectDwriteL(2,b);
|
||||
selectDwriteL(3,c);
|
||||
selectDwriteL(4,d);
|
||||
i++;
|
||||
}
|
||||
i=0;
|
||||
d--;
|
||||
}
|
||||
d=9;
|
||||
c--;
|
||||
}
|
||||
c=9;
|
||||
b--;
|
||||
}
|
||||
b=9;
|
||||
a--;
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
//Select Wich Digit (selectD) is going to Display (writeL)
|
||||
void selectDwriteL(int d,int l){
|
||||
switch (d) { // choose a digit
|
||||
case 0: digitalWrite(d1, LOW); //case 0 - All ON
|
||||
digitalWrite(d2, LOW);
|
||||
digitalWrite(d3, LOW);
|
||||
digitalWrite(d4, LOW);
|
||||
break;
|
||||
case 1: digitalWrite(d1, LOW);//case 1 - Digit Number 1
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
case 2: digitalWrite(d1, HIGH);//case 1 - Digit Number 2
|
||||
digitalWrite(d2, LOW);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
case 3: digitalWrite(d1, HIGH);//case 1 - Digit Number 3
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, LOW);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
case 4: digitalWrite(d1, HIGH);//case 1 - Digit Number 4
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, LOW);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (l) { // choose a Number
|
||||
case 0: zero();
|
||||
break;
|
||||
case 1: one();
|
||||
break;
|
||||
case 2: two();
|
||||
break;
|
||||
case 3: three();
|
||||
break;
|
||||
case 4: four();
|
||||
break;
|
||||
case 5: five();
|
||||
break;
|
||||
case 6: six();
|
||||
break;
|
||||
case 7: seven();
|
||||
break;
|
||||
case 8: eight();
|
||||
break;
|
||||
case 9: nine();
|
||||
break;
|
||||
case 10: point(); // print a Point
|
||||
break;
|
||||
case 11: one(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 12: two(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 13: three(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 14: four(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 15: five(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 16: six(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 17: seven(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 18: eight(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 19: nine(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
default: none(); // make all them off !
|
||||
break;
|
||||
}
|
||||
|
||||
delayMicroseconds(delayTime); // delayTime for nice display of the Number !
|
||||
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
//shown one Number in the 4 Digit
|
||||
void all(int n){
|
||||
selectDwriteL(0,n);
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
void zero(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void one(){
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void two(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, LOW);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void three(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void four(){
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void five(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void six(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void seven(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void eight(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void nine(){
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void point(){
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, LOW);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, HIGH);
|
||||
}
|
||||
//=============================================//
|
||||
void none(){
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, LOW);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
|
430
projects/controlLED/controlLED.ino
Normal file
430
projects/controlLED/controlLED.ino
Normal file
@ -0,0 +1,430 @@
|
||||
|
||||
|
||||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h"
|
||||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp"
|
||||
|
||||
// PIN FOR RECEIVER
|
||||
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
|
||||
|
||||
/*-----( Declare objects )-----*/
|
||||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
||||
decode_results results; // create instance of 'decode_results'
|
||||
|
||||
/*-----( Function )-----*/
|
||||
void translateIR() // takes action based on IR code received
|
||||
|
||||
// describing Remote IR codes
|
||||
|
||||
{
|
||||
|
||||
switch (results.value)
|
||||
{
|
||||
case 0xFFA25D: Serial.println("POWER"); off(); break;
|
||||
case 0xFFE21D: Serial.println("FUNC/STOP"); break;
|
||||
case 0xFF629D: Serial.println("VOL+"); break;
|
||||
case 0xFF22DD: Serial.println("FAST BACK"); break;
|
||||
case 0xFF02FD: Serial.println("PAUSE"); break;
|
||||
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
|
||||
case 0xFFE01F: Serial.println("DOWN"); break;
|
||||
case 0xFFA857: Serial.println("VOL-"); break;
|
||||
case 0xFF906F: Serial.println("UP"); break;
|
||||
case 0xFF9867: Serial.println("EQ"); downup(6, 9, 0); off(); break;
|
||||
case 0xFFB04F: Serial.println("ST/REPT"); downup(0, 9, 0); off(); break;
|
||||
case 0xFF6897: Serial.println("0"); all(0); break;
|
||||
case 0xFF30CF: Serial.println("1"); all(1); break;
|
||||
case 0xFF18E7: Serial.println("2"); all(2); break;
|
||||
case 0xFF7A85: Serial.println("3"); all(3); break;
|
||||
case 0xFF10EF: Serial.println("4"); all(4); break;
|
||||
case 0xFF38C7: Serial.println("5"); all(5); break;
|
||||
case 0xFF5AA5: Serial.println("6"); all(6); break;
|
||||
case 0xFF42BD: Serial.println("7"); all(7); break;
|
||||
case 0xFF4AB5: Serial.println("8"); all(8); break;
|
||||
case 0xFF52AD: Serial.println("9"); all(9); break;
|
||||
case 0xFFFFFFFF: Serial.println(" REPEAT"); break;
|
||||
|
||||
default:
|
||||
Serial.println(" other button ");
|
||||
|
||||
}// End Case
|
||||
|
||||
delay(1000); // Do not get immediate repeat
|
||||
|
||||
|
||||
} //END translateIR
|
||||
|
||||
///////////////////////////////////////////////
|
||||
|
||||
|
||||
//display pins
|
||||
int segA = 5; // >> 11
|
||||
int segB = 13; // >> 7
|
||||
int segC = 10; // >> 4
|
||||
int segD = 8; // >> 2
|
||||
int segE = 7; // >> 1
|
||||
int segF = 4; // >> 10
|
||||
int segG = 11; // >> 5
|
||||
int segPt = 9; // >> 3
|
||||
//------------//
|
||||
|
||||
//display digit
|
||||
int d1 = 6; // >> 12
|
||||
int d2 = 3; // >> 9
|
||||
int d3 = 2; // >> 8
|
||||
int d4 = 12; // >> 6
|
||||
//------------//
|
||||
|
||||
int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>
|
||||
int mydelay = 3000; // 50 is about one second, 3000 a minute
|
||||
int i = 0;
|
||||
|
||||
//=============================================//
|
||||
//init all pin used
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
Serial.println("IR Receiver Button Decode - Initializing...");
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
|
||||
pinMode(2, OUTPUT);
|
||||
// pinMode(3, OUTPUT); // reserved for IR input
|
||||
pinMode(4, OUTPUT);
|
||||
pinMode(5, OUTPUT);
|
||||
pinMode(6, OUTPUT);
|
||||
pinMode(7, OUTPUT);
|
||||
pinMode(8, OUTPUT);
|
||||
pinMode(9, OUTPUT);
|
||||
pinMode(10, OUTPUT);
|
||||
pinMode(11, OUTPUT);
|
||||
pinMode(12, OUTPUT);
|
||||
pinMode(13, OUTPUT);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=======================================================================================//
|
||||
//void loop() {
|
||||
//downup(0,20,9,0); // numbers above 19 display as blank.
|
||||
////all(8);
|
||||
////writeN(1,9,0,4);
|
||||
//}
|
||||
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/
|
||||
{
|
||||
if (irrecv.decode(&results)) // have we received an IR signal?
|
||||
{
|
||||
// Serial.println(results.value); // for debugging
|
||||
translateIR();
|
||||
irrecv.resume(); // receive the next value
|
||||
}
|
||||
|
||||
}/* --(end main loop )-- */
|
||||
|
||||
|
||||
//=======================================================================================//
|
||||
//Write a Number - writeN(1,9,9,0) -> 1990
|
||||
void writeN(int a, int b, int c, int d) {
|
||||
selectDwriteL(1, a);
|
||||
selectDwriteL(2, b);
|
||||
selectDwriteL(3, c);
|
||||
selectDwriteL(4, d);
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
//Make a Number Number Countdown (Timers).
|
||||
void downup(int A, int C, int D) {
|
||||
irrecv.resume();
|
||||
int a=0;
|
||||
int c, d;
|
||||
bool FLAG = 0;
|
||||
while (a <= A) {
|
||||
c = C;
|
||||
d = D;
|
||||
while (c != -1) {
|
||||
while (d != -1) {
|
||||
while (i < mydelay) { // i here is like a timer ! because we can't use delay function
|
||||
selectDwriteL(1, a);
|
||||
selectDwriteL(3, c);
|
||||
selectDwriteL(4, d);
|
||||
if (irrecv.decode(&results)) // have we received an IR signal?
|
||||
{
|
||||
// if(results.value == 16753245){
|
||||
translateIR();
|
||||
FLAG = 1;
|
||||
// break;
|
||||
irrecv.resume(); // receive the next value
|
||||
// }
|
||||
}
|
||||
i++;
|
||||
if(FLAG){d=0;a=A;c=0;i=mydelay;}
|
||||
}
|
||||
i = 0;
|
||||
d--;
|
||||
}
|
||||
d = 9;
|
||||
c--;
|
||||
}
|
||||
// c = 9; // third digit
|
||||
a++; // iterate the first digit to count up while the last two digits count down.
|
||||
//b--; // this uncommented leaves the second digit blank
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=============================================//
|
||||
//Make a Number Number Countdown (Timers).
|
||||
void down(int a, int b, int c, int d) {
|
||||
while (a != -1) {
|
||||
while (b != -1) {
|
||||
while (c != -1) {
|
||||
while (d != -1) {
|
||||
while (i < mydelay) { // i here is like a timer ! because we can't use delay function
|
||||
selectDwriteL(1, a);
|
||||
selectDwriteL(2, b);
|
||||
selectDwriteL(3, c);
|
||||
selectDwriteL(4, d);
|
||||
i++;
|
||||
}
|
||||
i = 0;
|
||||
d--;
|
||||
}
|
||||
d = 9;
|
||||
c--;
|
||||
}
|
||||
c = 9;
|
||||
b--;
|
||||
}
|
||||
b = 9;
|
||||
a--;
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
//Select Which Digit (selectD) is going to Display (writeL)
|
||||
void selectDwriteL(int d, int l) {
|
||||
switch (d) { // choose a digit
|
||||
case 0: digitalWrite(d1, LOW); //case 0 - All ON
|
||||
digitalWrite(d2, LOW);
|
||||
digitalWrite(d3, LOW);
|
||||
digitalWrite(d4, LOW);
|
||||
break;
|
||||
case 1: digitalWrite(d1, LOW);//case 1 - Digit Number 1
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
case 2: digitalWrite(d1, HIGH);//case 1 - Digit Number 2
|
||||
digitalWrite(d2, LOW);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
case 3: digitalWrite(d1, HIGH);//case 1 - Digit Number 3
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, LOW);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
case 4: digitalWrite(d1, HIGH);//case 1 - Digit Number 4
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, LOW);
|
||||
break;
|
||||
case 5: digitalWrite(d1, HIGH); //case 0 - All ON
|
||||
digitalWrite(d2, HIGH);
|
||||
digitalWrite(d3, HIGH);
|
||||
digitalWrite(d4, HIGH);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (l) { // choose a Number
|
||||
case 0: zero();
|
||||
break;
|
||||
case 1: one();
|
||||
break;
|
||||
case 2: two();
|
||||
break;
|
||||
case 3: three();
|
||||
break;
|
||||
case 4: four();
|
||||
break;
|
||||
case 5: five();
|
||||
break;
|
||||
case 6: six();
|
||||
break;
|
||||
case 7: seven();
|
||||
break;
|
||||
case 8: eight();
|
||||
break;
|
||||
case 9: nine();
|
||||
break;
|
||||
case 10: point(); // print a Point
|
||||
break;
|
||||
case 11: one(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 12: two(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 13: three(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 14: four(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 15: five(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 16: six(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 17: seven(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 18: eight(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case 19: nine(); digitalWrite(segPt, HIGH);
|
||||
break;
|
||||
case -1: none();
|
||||
break;
|
||||
default: none(); // make all them off !
|
||||
break;
|
||||
}
|
||||
|
||||
delayMicroseconds(delayTime); // delayTime for nice display of the Number !
|
||||
|
||||
}
|
||||
|
||||
//=============================================//
|
||||
//shown one Number in the 4 Digit
|
||||
void all(int n) {
|
||||
selectDwriteL(0, n);
|
||||
}
|
||||
|
||||
void off() {
|
||||
selectDwriteL(5, 0);
|
||||
}
|
||||
|
||||
|
||||
//=============================================//
|
||||
void zero() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void one() {
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void two() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, LOW);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void three() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void four() {
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void five() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void six() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void seven() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void eight() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, HIGH);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void nine() {
|
||||
digitalWrite(segA, HIGH);
|
||||
digitalWrite(segB, HIGH);
|
||||
digitalWrite(segC, HIGH);
|
||||
digitalWrite(segD, HIGH);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, HIGH);
|
||||
digitalWrite(segG, HIGH);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
//=============================================//
|
||||
void point() {
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, LOW);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, HIGH);
|
||||
}
|
||||
//=============================================//
|
||||
void none() {
|
||||
digitalWrite(segA, LOW);
|
||||
digitalWrite(segB, LOW);
|
||||
digitalWrite(segC, LOW);
|
||||
digitalWrite(segD, LOW);
|
||||
digitalWrite(segE, LOW);
|
||||
digitalWrite(segF, LOW);
|
||||
digitalWrite(segG, LOW);
|
||||
digitalWrite(segPt, LOW);
|
||||
}
|
||||
|
100
projects/controlservo/controlservo.ino
Normal file
100
projects/controlservo/controlservo.ino
Normal file
@ -0,0 +1,100 @@
|
||||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h"
|
||||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp"
|
||||
#include <Servo.h>
|
||||
|
||||
// PIN FOR RECEIVER
|
||||
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
|
||||
int pos = 0; // variable to store the servo position
|
||||
|
||||
/*-----( Declare objects )-----*/
|
||||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
||||
decode_results results; // create instance of 'decode_results'
|
||||
Servo myservo; // create servo object to control a servo
|
||||
|
||||
/*-----( Function )-----*/
|
||||
void translateIR() // takes action based on IR code received
|
||||
|
||||
// describing Remote IR codes
|
||||
|
||||
{
|
||||
|
||||
switch (results.value)
|
||||
{
|
||||
case 0xFFA25D: Serial.println("POWER"); myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
||||
break;
|
||||
case 0xFFE21D: Serial.println("FUNC/STOP"); myservo.detach(); // attaches the servo on pin 9 to the servo object
|
||||
break;
|
||||
case 0xFF629D: Serial.println("VOL+"); digitalWrite(8, HIGH); break;
|
||||
case 0xFF22DD: Serial.println("FAST BACK"); break;
|
||||
case 0xFF02FD: Serial.println("PAUSE"); break;
|
||||
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
|
||||
case 0xFFE01F: Serial.println("DOWN"); for (pos = 5; pos >=0; pos-=1){myservo.attach(9); myservo.write(pos); delay(15); myservo.detach();} break;
|
||||
case 0xFFA857: Serial.println("VOL-"); digitalWrite(8, LOW); break;
|
||||
case 0xFF906F: Serial.println("UP"); for (pos = 0; pos <=5; pos+=1){myservo.attach(9); myservo.write(pos); delay(15); myservo.detach();} break;
|
||||
case 0xFF9867: Serial.println("EQ"); break;
|
||||
case 0xFFB04F: Serial.println("ST/REPT"); break;
|
||||
case 0xFF6897: Serial.println("0"); break;
|
||||
case 0xFF30CF: Serial.println("1"); break;
|
||||
case 0xFF18E7: Serial.println("2"); break;
|
||||
case 0xFF7A85: Serial.println("3");; break;
|
||||
case 0xFF10EF: Serial.println("4"); break;
|
||||
case 0xFF38C7: Serial.println("5"); break;
|
||||
case 0xFF5AA5: Serial.println("6"); break;
|
||||
case 0xFF42BD: Serial.println("7"); break;
|
||||
case 0xFF4AB5: Serial.println("8"); break;
|
||||
case 0xFF52AD: Serial.println("9"); break;
|
||||
//case 0xFFFFFFFF: Serial.println(" REPEAT"); digitalWrite(8, LOW); break;
|
||||
|
||||
default:
|
||||
Serial.println(" other button ");
|
||||
|
||||
}// End Case
|
||||
|
||||
delay(50); // Do not get immediate repeat
|
||||
|
||||
|
||||
} //END translateIR
|
||||
|
||||
|
||||
|
||||
//=============================================//
|
||||
//init all pin used
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
Serial.println("IR Receiver Button Decode - Initializing...");
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
|
||||
pinMode(2, OUTPUT);
|
||||
// pinMode(3, OUTPUT); // reserved for IR input
|
||||
// pinMode(4, OUTPUT);
|
||||
// pinMode(5, OUTPUT);
|
||||
// pinMode(6, OUTPUT);
|
||||
// pinMode(7, OUTPUT);
|
||||
pinMode(8, OUTPUT);
|
||||
pinMode(9, OUTPUT);
|
||||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
||||
// pinMode(10, OUTPUT);
|
||||
// pinMode(11, OUTPUT);
|
||||
// pinMode(12, OUTPUT);
|
||||
// pinMode(13, OUTPUT);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//=======================================================================================//
|
||||
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/
|
||||
{
|
||||
if (irrecv.decode(&results)) // have we received an IR signal?
|
||||
{
|
||||
// Serial.println(results.value); // for debugging
|
||||
translateIR();
|
||||
irrecv.resume(); // receive the next value
|
||||
|
||||
}
|
||||
|
||||
}/* --(end main loop )-- */
|
||||
|
||||
|
||||
|
||||
|
||||
|
BIN
projects/elegoo-kit-lessons/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/.DS_Store
vendored
Normal file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Elegoo Super Starter Kit for UNO V1.0.2017.7.9.pdf
Executable file
BIN
projects/elegoo-kit-lessons/Elegoo Super Starter Kit for UNO V1.0.2017.7.9.pdf
Executable file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/.DS_Store
vendored
Normal file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/HC-SR04.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/HC-SR04.zip
Executable file
Binary file not shown.
@ -0,0 +1,21 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.08
|
||||
#include "SR04.h"
|
||||
#define TRIG_PIN 12
|
||||
#define ECHO_PIN 11
|
||||
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN);
|
||||
long a;
|
||||
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
a=sr04.Distance();
|
||||
if(a>0){
|
||||
Serial.print(a);
|
||||
Serial.println("cm");
|
||||
}
|
||||
delay(10);
|
||||
}
|
BIN
projects/elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/.DS_Store
vendored
Normal file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/DHT11/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/DHT11/.DS_Store
vendored
Normal file
Binary file not shown.
@ -0,0 +1,121 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
#include <SimpleDHT.h>
|
||||
#include <avr/sleep.h>
|
||||
// for DHT11,
|
||||
// VCC: 5V or 3V
|
||||
// GND: GND
|
||||
// DATA: 2
|
||||
int pinDHT11 = 2;
|
||||
SimpleDHT11 dht11;
|
||||
|
||||
void blink(int delayTime) {
|
||||
digitalWrite(13, HIGH);
|
||||
delay(delayTime);
|
||||
digitalWrite(13, LOW);
|
||||
delay(delayTime);
|
||||
}
|
||||
|
||||
void change(){
|
||||
delay(500);
|
||||
blink(1000);
|
||||
delay(500);
|
||||
}
|
||||
int ct = 0;
|
||||
int SerialTransmit = 1;
|
||||
int pin2_interrupt_flag = 0;
|
||||
|
||||
void pin2_isr()
|
||||
{
|
||||
sleep_disable();
|
||||
detachInterrupt(0);
|
||||
pin2_interrupt_flag = 1;
|
||||
}
|
||||
|
||||
void setup() {
|
||||
if(SerialTransmit){Serial.begin(9600);}
|
||||
pinMode(13,OUTPUT);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// start working...
|
||||
|
||||
// sleep_enable();
|
||||
// attachInterrupt(0, pin2_isr, LOW);
|
||||
/* 0, 1, or many lines of code here */
|
||||
|
||||
|
||||
if(SerialTransmit){
|
||||
Serial.println("=================================");
|
||||
Serial.println("Sample DHT11...");
|
||||
}
|
||||
byte temperature = 0;
|
||||
byte humidity = 0;
|
||||
byte data[40] = {0};
|
||||
// read with raw sample data
|
||||
if(ct >= 0){
|
||||
dht11.read(pinDHT11, &temperature, &humidity, data);
|
||||
ct++;
|
||||
|
||||
// TEMPERATURE
|
||||
for (int i = 0; i < (int)temperature/100; i++){
|
||||
blink(50);
|
||||
}
|
||||
|
||||
change();
|
||||
for (int i = 0; i < (int)temperature/10; i++){
|
||||
blink(50);
|
||||
}
|
||||
|
||||
change();
|
||||
for (int i = 0; i < (int)temperature%10; i++){
|
||||
blink(50);
|
||||
}
|
||||
|
||||
// HUMIDITY
|
||||
change();
|
||||
for (int i = 0; i < (int)humidity/10; i++){
|
||||
blink(50);
|
||||
}
|
||||
|
||||
change();
|
||||
for (int i = 0; i < (int)humidity%10; i++){
|
||||
blink(50);
|
||||
}
|
||||
}
|
||||
|
||||
delay(1000);
|
||||
|
||||
|
||||
if(SerialTransmit){
|
||||
if (dht11.read(pinDHT11, &temperature, &humidity, data)) {
|
||||
Serial.print("Read DHT11 failed");
|
||||
return;
|
||||
}
|
||||
|
||||
Serial.print("Sample RAW Bits: ");
|
||||
for (int i = 0; i < 40; i++) {
|
||||
Serial.print((int)data[i]);
|
||||
if (i > 0 && ((i + 1) % 4) == 0) {
|
||||
Serial.print(' ');
|
||||
}
|
||||
}
|
||||
Serial.println("");
|
||||
|
||||
Serial.print("Sample OK: ");
|
||||
Serial.print((int)temperature); Serial.print(" *C, ");
|
||||
Serial.print((int)humidity); Serial.println(" %");
|
||||
|
||||
// DHT11 sampling rate is 1HZ.
|
||||
delay(1000);
|
||||
}
|
||||
// set_sleep_mode(SLEEP_MODE_PWR_DOWN);
|
||||
// cli();
|
||||
// sleep_bod_disable();
|
||||
// sei();
|
||||
// sleep_cpu();
|
||||
// /* wake up here */
|
||||
// sleep_disable();
|
||||
// ct = 0;
|
||||
}
|
Binary file not shown.
@ -0,0 +1,26 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.09
|
||||
|
||||
// Arduino pin numbers
|
||||
const int SW_pin = 2; // digital pin connected to switch output
|
||||
const int X_pin = 0; // analog pin connected to X output
|
||||
const int Y_pin = 1; // analog pin connected to Y output
|
||||
|
||||
void setup() {
|
||||
pinMode(SW_pin, INPUT);
|
||||
digitalWrite(SW_pin, HIGH);
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
Serial.print("Switch: ");
|
||||
Serial.print(digitalRead(SW_pin));
|
||||
Serial.print("\n");
|
||||
Serial.print("X-axis: ");
|
||||
Serial.print(analogRead(X_pin));
|
||||
Serial.print("\n");
|
||||
Serial.print("Y-axis: ");
|
||||
Serial.println(analogRead(Y_pin));
|
||||
Serial.print("\n\n");
|
||||
delay(500);
|
||||
}
|
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/.DS_Store
vendored
Normal file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IR_Receiver_Module/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IR_Receiver_Module/.DS_Store
vendored
Normal file
Binary file not shown.
@ -0,0 +1,77 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h"
|
||||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp"
|
||||
//#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremoteInt.h"
|
||||
int LEDPIN = 8;
|
||||
|
||||
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
|
||||
/*-----( Declare objects )-----*/
|
||||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
||||
decode_results results; // create instance of 'decode_results'
|
||||
|
||||
/*-----( Function )-----*/
|
||||
void translateIR() // takes action based on IR code received
|
||||
|
||||
// describing Remote IR codes
|
||||
|
||||
{
|
||||
|
||||
switch(results.value)
|
||||
{
|
||||
case 0xFFA25D: Serial.println("POWER"); digitalWrite(LEDPIN, HIGH); break;
|
||||
case 0xFFE21D: Serial.println("FUNC/STOP"); digitalWrite(LEDPIN, LOW); break;
|
||||
case 0xFF629D: Serial.println("VOL+"); break;
|
||||
case 0xFF22DD: Serial.println("FAST BACK"); break;
|
||||
case 0xFF02FD: Serial.println("PAUSE"); break;
|
||||
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
|
||||
case 0xFFE01F: Serial.println("DOWN"); break;
|
||||
case 0xFFA857: Serial.println("VOL-"); break;
|
||||
case 0xFF906F: Serial.println("UP"); break;
|
||||
case 0xFF9867: Serial.println("EQ"); break;
|
||||
case 0xFFB04F: Serial.println("ST/REPT"); break;
|
||||
case 0xFF6897: Serial.println("0"); break;
|
||||
case 0xFF30CF: Serial.println("1"); break;
|
||||
case 0xFF18E7: Serial.println("2"); break;
|
||||
case 0xFF7A85: Serial.println("3"); break;
|
||||
case 0xFF10EF: Serial.println("4"); break;
|
||||
case 0xFF38C7: Serial.println("5"); break;
|
||||
case 0xFF5AA5: Serial.println("6"); break;
|
||||
case 0xFF42BD: Serial.println("7"); break;
|
||||
case 0xFF4AB5: Serial.println("8"); break;
|
||||
case 0xFF52AD: Serial.println("9"); break;
|
||||
//case 0xFFFFFFFF: Serial.println(" REPEAT"); digitalWrite(8, LOW); break;
|
||||
|
||||
default:
|
||||
Serial.println(" other button ");
|
||||
|
||||
}// End Case
|
||||
|
||||
delay(100); // Do not get immediate repeat
|
||||
|
||||
|
||||
} //END translateIR
|
||||
void setup() /*----( SETUP: RUNS ONCE )----*/
|
||||
{
|
||||
Serial.begin(9600);
|
||||
Serial.println("IR Receiver Button Decode - Initializing...");
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
pinMode(LEDPIN, OUTPUT);
|
||||
Serial.println("Done.");
|
||||
|
||||
}/*--(end setup )---*/
|
||||
|
||||
|
||||
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/
|
||||
{
|
||||
if (irrecv.decode(&results)) // have we received an IR signal?
|
||||
|
||||
{
|
||||
translateIR();
|
||||
//Serial.println(results.value);
|
||||
irrecv.resume(); // receive the next value
|
||||
}
|
||||
}/* --(end main loop )-- */
|
||||
|
||||
|
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote.zip
Executable file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/.DS_Store
vendored
Normal file
Binary file not shown.
1154
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.cpp
Executable file
1154
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.cpp
Executable file
File diff suppressed because it is too large
Load Diff
128
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.h
Executable file
128
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.h
Executable file
@ -0,0 +1,128 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
|
||||
* Edited by Mitra to add new controller SANYO
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
* LG added by Darryl Smith (based on the JVC protocol)
|
||||
*/
|
||||
|
||||
#ifndef IRremote_h
|
||||
#define IRremote_h
|
||||
|
||||
// The following are compile-time library options.
|
||||
// If you change them, recompile the library.
|
||||
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
|
||||
// TEST must be defined for the IRtest unittests to work. It will make some
|
||||
// methods virtual, which will be slightly slower, which is why it is optional.
|
||||
// #define DEBUG
|
||||
// #define TEST
|
||||
|
||||
// Results returned from the decoder
|
||||
class decode_results {
|
||||
public:
|
||||
int decode_type; // NEC, SONY, RC5, UNKNOWN
|
||||
union { // This is used for decoding Panasonic and Sharp data
|
||||
unsigned int panasonicAddress;
|
||||
unsigned int sharpAddress;
|
||||
};
|
||||
unsigned long value; // Decoded value
|
||||
int bits; // Number of bits in decoded value
|
||||
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
|
||||
int rawlen; // Number of records in rawbuf.
|
||||
};
|
||||
|
||||
// Values for decode_type
|
||||
#define NEC 1
|
||||
#define SONY 2
|
||||
#define RC5 3
|
||||
#define RC6 4
|
||||
#define DISH 5
|
||||
#define SHARP 6
|
||||
#define PANASONIC 7
|
||||
#define JVC 8
|
||||
#define SANYO 9
|
||||
#define MITSUBISHI 10
|
||||
#define SAMSUNG 11
|
||||
#define LG 12
|
||||
#define UNKNOWN -1
|
||||
|
||||
// Decoded value for NEC when a repeat code is received
|
||||
#define REPEAT 0xffffffff
|
||||
|
||||
// main class for receiving IR
|
||||
class IRrecv
|
||||
{
|
||||
public:
|
||||
IRrecv(int recvpin);
|
||||
void blink13(int blinkflag);
|
||||
int decode(decode_results *results);
|
||||
void enableIRIn();
|
||||
void resume();
|
||||
private:
|
||||
// These are called by decode
|
||||
int getRClevel(decode_results *results, int *offset, int *used, int t1);
|
||||
long decodeNEC(decode_results *results);
|
||||
long decodeSony(decode_results *results);
|
||||
long decodeSanyo(decode_results *results);
|
||||
long decodeMitsubishi(decode_results *results);
|
||||
long decodeRC5(decode_results *results);
|
||||
long decodeRC6(decode_results *results);
|
||||
long decodePanasonic(decode_results *results);
|
||||
long decodeLG(decode_results *results);
|
||||
long decodeJVC(decode_results *results);
|
||||
long decodeSAMSUNG(decode_results *results);
|
||||
long decodeHash(decode_results *results);
|
||||
int compare(unsigned int oldval, unsigned int newval);
|
||||
|
||||
}
|
||||
;
|
||||
|
||||
// Only used for testing; can remove virtual for shorter code
|
||||
#ifdef TEST
|
||||
#define VIRTUAL virtual
|
||||
#else
|
||||
#define VIRTUAL
|
||||
#endif
|
||||
|
||||
class IRsend
|
||||
{
|
||||
public:
|
||||
IRsend() {}
|
||||
void sendNEC(unsigned long data, int nbits);
|
||||
void sendSony(unsigned long data, int nbits);
|
||||
// Neither Sanyo nor Mitsubishi send is implemented yet
|
||||
// void sendSanyo(unsigned long data, int nbits);
|
||||
// void sendMitsubishi(unsigned long data, int nbits);
|
||||
void sendRaw(unsigned int buf[], int len, int hz);
|
||||
void sendRC5(unsigned long data, int nbits);
|
||||
void sendRC6(unsigned long data, int nbits);
|
||||
void sendDISH(unsigned long data, int nbits);
|
||||
void sendSharp(unsigned int address, unsigned int command);
|
||||
void sendSharpRaw(unsigned long data, int nbits);
|
||||
void sendPanasonic(unsigned int address, unsigned long data);
|
||||
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
|
||||
// private:
|
||||
void sendSAMSUNG(unsigned long data, int nbits);
|
||||
void enableIROut(int khz);
|
||||
VIRTUAL void mark(int usec);
|
||||
VIRTUAL void space(int usec);
|
||||
}
|
||||
;
|
||||
|
||||
// Some useful constants
|
||||
|
||||
#define USECPERTICK 50 // microseconds per clock interrupt tick
|
||||
#define RAWBUF 100 // Length of raw duration buffer
|
||||
|
||||
// Marks tend to be 100us too long, and spaces 100us too short
|
||||
// when received due to sensor lag.
|
||||
#define MARK_EXCESS 100
|
||||
|
||||
#endif
|
515
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremoteInt.h
Executable file
515
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremoteInt.h
Executable file
@ -0,0 +1,515 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#ifndef IRremoteint_h
|
||||
#define IRremoteint_h
|
||||
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#endif
|
||||
|
||||
// define which timer to use
|
||||
//
|
||||
// Uncomment the timer you wish to use on your board. If you
|
||||
// are using another library which uses timer2, you have options
|
||||
// to switch IRremote to use a different timer.
|
||||
|
||||
// Arduino Mega
|
||||
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 11
|
||||
#define IR_USE_TIMER2 // tx = pin 9
|
||||
//#define IR_USE_TIMER3 // tx = pin 5
|
||||
//#define IR_USE_TIMER4 // tx = pin 6
|
||||
//#define IR_USE_TIMER5 // tx = pin 46
|
||||
|
||||
// Teensy 1.0
|
||||
#elif defined(__AVR_AT90USB162__)
|
||||
#define IR_USE_TIMER1 // tx = pin 17
|
||||
|
||||
// Teensy 2.0
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 14
|
||||
//#define IR_USE_TIMER3 // tx = pin 9
|
||||
#define IR_USE_TIMER4_HS // tx = pin 10
|
||||
|
||||
// Teensy 3.0
|
||||
#elif defined(__MK20DX128__)
|
||||
#define IR_USE_TIMER_CMT // tx = pin 5
|
||||
|
||||
// Teensy++ 1.0 & 2.0
|
||||
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 25
|
||||
#define IR_USE_TIMER2 // tx = pin 1
|
||||
//#define IR_USE_TIMER3 // tx = pin 16
|
||||
|
||||
// Sanguino
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 13
|
||||
#define IR_USE_TIMER2 // tx = pin 14
|
||||
|
||||
// Atmega8
|
||||
#elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
|
||||
#define IR_USE_TIMER1 // tx = pin 9
|
||||
|
||||
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
|
||||
#else
|
||||
//#define IR_USE_TIMER1 // tx = pin 9
|
||||
#define IR_USE_TIMER2 // tx = pin 3
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef F_CPU
|
||||
#define SYSCLOCK F_CPU // main Arduino clock
|
||||
#else
|
||||
#define SYSCLOCK 16000000 // main Arduino clock
|
||||
#endif
|
||||
|
||||
#define ERR 0
|
||||
#define DECODED 1
|
||||
|
||||
|
||||
// defines for setting and clearing register bits
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
// Pulse parms are *50-100 for the Mark and *50+100 for the space
|
||||
// First MARK is the one after the long gap
|
||||
// pulse parameters in usec
|
||||
#define NEC_HDR_MARK 9000
|
||||
#define NEC_HDR_SPACE 4500
|
||||
#define NEC_BIT_MARK 560
|
||||
#define NEC_ONE_SPACE 1600
|
||||
#define NEC_ZERO_SPACE 560
|
||||
#define NEC_RPT_SPACE 2250
|
||||
|
||||
#define SONY_HDR_MARK 2400
|
||||
#define SONY_HDR_SPACE 600
|
||||
#define SONY_ONE_MARK 1200
|
||||
#define SONY_ZERO_MARK 600
|
||||
#define SONY_RPT_LENGTH 45000
|
||||
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
|
||||
|
||||
// SA 8650B
|
||||
#define SANYO_HDR_MARK 3500 // seen range 3500
|
||||
#define SANYO_HDR_SPACE 950 // seen 950
|
||||
#define SANYO_ONE_MARK 2400 // seen 2400
|
||||
#define SANYO_ZERO_MARK 700 // seen 700
|
||||
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
||||
#define SANYO_RPT_LENGTH 45000
|
||||
|
||||
// Mitsubishi RM 75501
|
||||
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
|
||||
|
||||
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
|
||||
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
|
||||
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
|
||||
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
|
||||
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
||||
// #define MITSUBISHI_RPT_LENGTH 45000
|
||||
|
||||
|
||||
#define RC5_T1 889
|
||||
#define RC5_RPT_LENGTH 46000
|
||||
|
||||
#define RC6_HDR_MARK 2666
|
||||
#define RC6_HDR_SPACE 889
|
||||
#define RC6_T1 444
|
||||
#define RC6_RPT_LENGTH 46000
|
||||
|
||||
#define SHARP_BIT_MARK 245
|
||||
#define SHARP_ONE_SPACE 1805
|
||||
#define SHARP_ZERO_SPACE 795
|
||||
#define SHARP_GAP 600000
|
||||
#define SHARP_TOGGLE_MASK 0x3FF
|
||||
#define SHARP_RPT_SPACE 3000
|
||||
|
||||
#define DISH_HDR_MARK 400
|
||||
#define DISH_HDR_SPACE 6100
|
||||
#define DISH_BIT_MARK 400
|
||||
#define DISH_ONE_SPACE 1700
|
||||
#define DISH_ZERO_SPACE 2800
|
||||
#define DISH_RPT_SPACE 6200
|
||||
#define DISH_TOP_BIT 0x8000
|
||||
|
||||
#define PANASONIC_HDR_MARK 3502
|
||||
#define PANASONIC_HDR_SPACE 1750
|
||||
#define PANASONIC_BIT_MARK 502
|
||||
#define PANASONIC_ONE_SPACE 1244
|
||||
#define PANASONIC_ZERO_SPACE 400
|
||||
|
||||
#define JVC_HDR_MARK 8000
|
||||
#define JVC_HDR_SPACE 4000
|
||||
#define JVC_BIT_MARK 600
|
||||
#define JVC_ONE_SPACE 1600
|
||||
#define JVC_ZERO_SPACE 550
|
||||
#define JVC_RPT_LENGTH 60000
|
||||
|
||||
#define LG_HDR_MARK 8000
|
||||
#define LG_HDR_SPACE 4000
|
||||
#define LG_BIT_MARK 600
|
||||
#define LG_ONE_SPACE 1600
|
||||
#define LG_ZERO_SPACE 550
|
||||
#define LG_RPT_LENGTH 60000
|
||||
|
||||
#define SAMSUNG_HDR_MARK 5000
|
||||
#define SAMSUNG_HDR_SPACE 5000
|
||||
#define SAMSUNG_BIT_MARK 560
|
||||
#define SAMSUNG_ONE_SPACE 1600
|
||||
#define SAMSUNG_ZERO_SPACE 560
|
||||
#define SAMSUNG_RPT_SPACE 2250
|
||||
|
||||
|
||||
#define SHARP_BITS 15
|
||||
#define DISH_BITS 16
|
||||
|
||||
#define TOLERANCE 25 // percent tolerance in measurements
|
||||
#define LTOL (1.0 - TOLERANCE/100.)
|
||||
#define UTOL (1.0 + TOLERANCE/100.)
|
||||
|
||||
#define _GAP 5000 // Minimum map between transmissions
|
||||
#define GAP_TICKS (_GAP/USECPERTICK)
|
||||
|
||||
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK))
|
||||
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1))
|
||||
|
||||
// receiver states
|
||||
#define STATE_IDLE 2
|
||||
#define STATE_MARK 3
|
||||
#define STATE_SPACE 4
|
||||
#define STATE_STOP 5
|
||||
|
||||
// information for the interrupt handler
|
||||
typedef struct {
|
||||
uint8_t recvpin; // pin for IR data from detector
|
||||
uint8_t rcvstate; // state machine
|
||||
uint8_t blinkflag; // TRUE to enable blinking of pin 13 on IR processing
|
||||
unsigned int timer; // state timer, counts 50uS ticks.
|
||||
unsigned int rawbuf[RAWBUF]; // raw data
|
||||
uint8_t rawlen; // counter of entries in rawbuf
|
||||
}
|
||||
irparams_t;
|
||||
|
||||
// Defined in IRremote.cpp
|
||||
extern volatile irparams_t irparams;
|
||||
|
||||
// IR detector output is active low
|
||||
#define MARK 0
|
||||
#define SPACE 1
|
||||
|
||||
#define TOPBIT 0x80000000
|
||||
|
||||
#define NEC_BITS 32
|
||||
#define SONY_BITS 12
|
||||
#define SANYO_BITS 12
|
||||
#define MITSUBISHI_BITS 16
|
||||
#define MIN_RC5_SAMPLES 11
|
||||
#define MIN_RC6_SAMPLES 1
|
||||
#define PANASONIC_BITS 48
|
||||
#define JVC_BITS 16
|
||||
#define LG_BITS 28
|
||||
#define SAMSUNG_BITS 32
|
||||
|
||||
|
||||
|
||||
|
||||
// defines for timer2 (8 bits)
|
||||
#if defined(IR_USE_TIMER2)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
|
||||
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
|
||||
#define TIMER_INTR_NAME TIMER2_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR2A = _BV(WGM20); \
|
||||
TCCR2B = _BV(WGM22) | _BV(CS20); \
|
||||
OCR2A = pwmval; \
|
||||
OCR2B = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
|
||||
#if (TIMER_COUNT_TOP < 256)
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR2A = _BV(WGM21); \
|
||||
TCCR2B = _BV(CS20); \
|
||||
OCR2A = TIMER_COUNT_TOP; \
|
||||
TCNT2 = 0; \
|
||||
})
|
||||
#else
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR2A = _BV(WGM21); \
|
||||
TCCR2B = _BV(CS21); \
|
||||
OCR2A = TIMER_COUNT_TOP / 8; \
|
||||
TCNT2 = 0; \
|
||||
})
|
||||
#endif
|
||||
#if defined(CORE_OC2B_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC2B_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 9 /* Arduino Mega */
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define TIMER_PWM_PIN 14 /* Sanguino */
|
||||
#else
|
||||
#define TIMER_PWM_PIN 3 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer1 (16 bits)
|
||||
#elif defined(IR_USE_TIMER1)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
|
||||
#if defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
|
||||
#define TIMER_ENABLE_INTR (TIMSK = _BV(OCIE1A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK = 0)
|
||||
#else
|
||||
#define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK1 = 0)
|
||||
#endif
|
||||
#define TIMER_INTR_NAME TIMER1_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR1A = _BV(WGM11); \
|
||||
TCCR1B = _BV(WGM13) | _BV(CS10); \
|
||||
ICR1 = pwmval; \
|
||||
OCR1A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR1A = 0; \
|
||||
TCCR1B = _BV(WGM12) | _BV(CS10); \
|
||||
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT1 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC1A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC1A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 11 /* Arduino Mega */
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define TIMER_PWM_PIN 13 /* Sanguino */
|
||||
#else
|
||||
#define TIMER_PWM_PIN 9 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer3 (16 bits)
|
||||
#elif defined(IR_USE_TIMER3)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
|
||||
#define TIMER_INTR_NAME TIMER3_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR3A = _BV(WGM31); \
|
||||
TCCR3B = _BV(WGM33) | _BV(CS30); \
|
||||
ICR3 = pwmval; \
|
||||
OCR3A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR3A = 0; \
|
||||
TCCR3B = _BV(WGM32) | _BV(CS30); \
|
||||
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT3 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC3A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC3A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 5 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC3A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer4 (10 bits, high speed option)
|
||||
#elif defined(IR_USE_TIMER4_HS)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
|
||||
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
|
||||
#define TIMER_INTR_NAME TIMER4_OVF_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR4A = (1<<PWM4A); \
|
||||
TCCR4B = _BV(CS40); \
|
||||
TCCR4C = 0; \
|
||||
TCCR4D = (1<<WGM40); \
|
||||
TCCR4E = 0; \
|
||||
TC4H = pwmval >> 8; \
|
||||
OCR4C = pwmval; \
|
||||
TC4H = (pwmval / 3) >> 8; \
|
||||
OCR4A = (pwmval / 3) & 255; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR4A = 0; \
|
||||
TCCR4B = _BV(CS40); \
|
||||
TCCR4C = 0; \
|
||||
TCCR4D = 0; \
|
||||
TCCR4E = 0; \
|
||||
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
|
||||
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
|
||||
TC4H = 0; \
|
||||
TCNT4 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC4A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC4A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
#define TIMER_PWM_PIN 13 /* Leonardo */
|
||||
#else
|
||||
#error "Please add OC4A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer4 (16 bits)
|
||||
#elif defined(IR_USE_TIMER4)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
|
||||
#define TIMER_INTR_NAME TIMER4_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR4A = _BV(WGM41); \
|
||||
TCCR4B = _BV(WGM43) | _BV(CS40); \
|
||||
ICR4 = pwmval; \
|
||||
OCR4A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR4A = 0; \
|
||||
TCCR4B = _BV(WGM42) | _BV(CS40); \
|
||||
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT4 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC4A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC4A_PIN
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 6 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC4A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer5 (16 bits)
|
||||
#elif defined(IR_USE_TIMER5)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
|
||||
#define TIMER_INTR_NAME TIMER5_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR5A = _BV(WGM51); \
|
||||
TCCR5B = _BV(WGM53) | _BV(CS50); \
|
||||
ICR5 = pwmval; \
|
||||
OCR5A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR5A = 0; \
|
||||
TCCR5B = _BV(WGM52) | _BV(CS50); \
|
||||
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT5 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC5A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC5A_PIN
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 46 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC5A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for special carrier modulator timer
|
||||
#elif defined(IR_USE_TIMER_CMT)
|
||||
#define TIMER_RESET ({ \
|
||||
uint8_t tmp = CMT_MSC; \
|
||||
CMT_CMD2 = 30; \
|
||||
})
|
||||
#define TIMER_ENABLE_PWM CORE_PIN5_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_DSE|PORT_PCR_SRE
|
||||
#define TIMER_DISABLE_PWM CORE_PIN5_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_DSE|PORT_PCR_SRE
|
||||
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT)
|
||||
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT)
|
||||
#define TIMER_INTR_NAME cmt_isr
|
||||
#ifdef ISR
|
||||
#undef ISR
|
||||
#endif
|
||||
#define ISR(f) void f(void)
|
||||
#if F_BUS == 48000000
|
||||
#define CMT_PPS_VAL 5
|
||||
#else
|
||||
#define CMT_PPS_VAL 2
|
||||
#endif
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
SIM_SCGC4 |= SIM_SCGC4_CMT; \
|
||||
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \
|
||||
CMT_PPS = CMT_PPS_VAL; \
|
||||
CMT_CGH1 = 2667 / val; \
|
||||
CMT_CGL1 = 5333 / val; \
|
||||
CMT_CMD1 = 0; \
|
||||
CMT_CMD2 = 30; \
|
||||
CMT_CMD3 = 0; \
|
||||
CMT_CMD4 = 0; \
|
||||
CMT_OC = 0x60; \
|
||||
CMT_MSC = 0x01; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
SIM_SCGC4 |= SIM_SCGC4_CMT; \
|
||||
CMT_PPS = CMT_PPS_VAL; \
|
||||
CMT_CGH1 = 1; \
|
||||
CMT_CGL1 = 1; \
|
||||
CMT_CMD1 = 0; \
|
||||
CMT_CMD2 = 30; \
|
||||
CMT_CMD3 = 0; \
|
||||
CMT_CMD4 = 19; \
|
||||
CMT_OC = 0; \
|
||||
CMT_MSC = 0x03; \
|
||||
})
|
||||
#define TIMER_PWM_PIN 5
|
||||
|
||||
|
||||
#else // unknown timer
|
||||
#error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for blinking the LED
|
||||
#if defined(CORE_LED0_PIN)
|
||||
#define BLINKLED CORE_LED0_PIN
|
||||
#define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
|
||||
#define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define BLINKLED 13
|
||||
#define BLINKLED_ON() (PORTB |= B10000000)
|
||||
#define BLINKLED_OFF() (PORTB &= B01111111)
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define BLINKLED 0
|
||||
#define BLINKLED_ON() (PORTD |= B00000001)
|
||||
#define BLINKLED_OFF() (PORTD &= B11111110)
|
||||
#else
|
||||
#define BLINKLED 13
|
||||
#define BLINKLED_ON() (PORTB |= B00100000)
|
||||
#define BLINKLED_OFF() (PORTB &= B11011111)
|
||||
#endif
|
||||
|
||||
#endif
|
458
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/LICENSE.txt
Executable file
458
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/LICENSE.txt
Executable file
@ -0,0 +1,458 @@
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it becomes
|
||||
a de-facto standard. To achieve this, non-free programs must be
|
||||
allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control compilation
|
||||
and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at
|
||||
least three years, to give the same user the materials
|
||||
specified in Subsection 6a, above, for a charge no more
|
||||
than the cost of performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under any
|
||||
particular circumstance, the balance of the section is intended to apply,
|
||||
and the section as a whole is intended to apply in other circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License may add
|
||||
an explicit geographical distribution limitation excluding those countries,
|
||||
so that distribution is permitted only in or among countries not thus
|
||||
excluded. In such case, this License incorporates the limitation as if
|
||||
written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
@ -0,0 +1,168 @@
|
||||
/*
|
||||
* IRrecord: record and play back IR signals as a minimal
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* An IR LED must be connected to the output PWM pin 3.
|
||||
* A button must be connected to the input BUTTON_PIN; this is the
|
||||
* send button.
|
||||
* A visible LED can be connected to STATUS_PIN to provide status.
|
||||
*
|
||||
* The logic is:
|
||||
* If the button is pressed, send the IR code.
|
||||
* If an IR code is received, record it.
|
||||
*
|
||||
* Version 0.11 September, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include </Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h>
|
||||
#include </Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int BUTTON_PIN = 12;
|
||||
int STATUS_PIN = 13;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
IRsend irsend;
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
pinMode(BUTTON_PIN, INPUT);
|
||||
pinMode(STATUS_PIN, OUTPUT);
|
||||
}
|
||||
|
||||
// Storage for the recorded code
|
||||
int codeType = -1; // The type of code
|
||||
unsigned long codeValue; // The code value if not raw
|
||||
unsigned int rawCodes[RAWBUF]; // The durations if raw
|
||||
int codeLen; // The length of the code
|
||||
int toggle = 0; // The RC5/6 toggle state
|
||||
|
||||
// Stores the code for later playback
|
||||
// Most of this code is just logging
|
||||
void storeCode(decode_results *results) {
|
||||
codeType = results->decode_type;
|
||||
int count = results->rawlen;
|
||||
if (codeType == UNKNOWN) {
|
||||
Serial.println("Received unknown code, saving as raw");
|
||||
codeLen = results->rawlen - 1;
|
||||
// To store raw codes:
|
||||
// Drop first value (gap)
|
||||
// Convert from ticks to microseconds
|
||||
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
|
||||
for (int i = 1; i <= codeLen; i++) {
|
||||
if (i % 2) {
|
||||
// Mark
|
||||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
|
||||
Serial.print(" m");
|
||||
}
|
||||
else {
|
||||
// Space
|
||||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
|
||||
Serial.print(" s");
|
||||
}
|
||||
Serial.print(rawCodes[i - 1], DEC);
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
else {
|
||||
if (codeType == NEC) {
|
||||
Serial.print("Received NEC: ");
|
||||
if (results->value == REPEAT) {
|
||||
// Don't record a NEC repeat value as that's useless.
|
||||
Serial.println("repeat; ignoring.");
|
||||
return;
|
||||
}
|
||||
}
|
||||
else if (codeType == SONY) {
|
||||
Serial.print("Received SONY: ");
|
||||
}
|
||||
else if (codeType == RC5) {
|
||||
Serial.print("Received RC5: ");
|
||||
}
|
||||
else if (codeType == RC6) {
|
||||
Serial.print("Received RC6: ");
|
||||
}
|
||||
else {
|
||||
Serial.print("Unexpected codeType ");
|
||||
Serial.print(codeType, DEC);
|
||||
Serial.println("");
|
||||
}
|
||||
Serial.println(results->value, HEX);
|
||||
codeValue = results->value;
|
||||
codeLen = results->bits;
|
||||
}
|
||||
}
|
||||
|
||||
void sendCode(int repeat) {
|
||||
if (codeType == NEC) {
|
||||
if (repeat) {
|
||||
irsend.sendNEC(REPEAT, codeLen);
|
||||
Serial.println("Sent NEC repeat");
|
||||
}
|
||||
else {
|
||||
irsend.sendNEC(codeValue, codeLen);
|
||||
Serial.print("Sent NEC ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
}
|
||||
else if (codeType == SONY) {
|
||||
irsend.sendSony(codeValue, codeLen);
|
||||
Serial.print("Sent Sony ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
else if (codeType == RC5 || codeType == RC6) {
|
||||
if (!repeat) {
|
||||
// Flip the toggle bit for a new button press
|
||||
toggle = 1 - toggle;
|
||||
}
|
||||
// Put the toggle bit into the code to send
|
||||
codeValue = codeValue & ~(1 << (codeLen - 1));
|
||||
codeValue = codeValue | (toggle << (codeLen - 1));
|
||||
if (codeType == RC5) {
|
||||
Serial.print("Sent RC5 ");
|
||||
Serial.println(codeValue, HEX);
|
||||
irsend.sendRC5(codeValue, codeLen);
|
||||
}
|
||||
else {
|
||||
irsend.sendRC6(codeValue, codeLen);
|
||||
Serial.print("Sent RC6 ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
}
|
||||
else if (codeType == UNKNOWN /* i.e. raw */) {
|
||||
// Assume 38 KHz
|
||||
irsend.sendRaw(rawCodes, codeLen, 38);
|
||||
Serial.println("Sent raw");
|
||||
}
|
||||
}
|
||||
|
||||
int lastButtonState;
|
||||
|
||||
void loop() {
|
||||
// If button pressed, send the code.
|
||||
int buttonState = digitalRead(BUTTON_PIN);
|
||||
if (lastButtonState == HIGH && buttonState == LOW) {
|
||||
Serial.println("Released");
|
||||
irrecv.enableIRIn(); // Re-enable receiver
|
||||
}
|
||||
|
||||
if (buttonState) {
|
||||
Serial.println("Pressed, sending");
|
||||
digitalWrite(STATUS_PIN, HIGH);
|
||||
sendCode(lastButtonState == buttonState);
|
||||
digitalWrite(STATUS_PIN, LOW);
|
||||
delay(50); // Wait a bit between retransmissions
|
||||
}
|
||||
else if (irrecv.decode(&results)) {
|
||||
digitalWrite(STATUS_PIN, HIGH);
|
||||
storeCode(&results);
|
||||
irrecv.resume(); // resume receiver
|
||||
digitalWrite(STATUS_PIN, LOW);
|
||||
}
|
||||
lastButtonState = buttonState;
|
||||
}
|
@ -0,0 +1,128 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
|
||||
* Edited by Mitra to add new controller SANYO
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
* LG added by Darryl Smith (based on the JVC protocol)
|
||||
*/
|
||||
|
||||
#ifndef IRremote_h
|
||||
#define IRremote_h
|
||||
|
||||
// The following are compile-time library options.
|
||||
// If you change them, recompile the library.
|
||||
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
|
||||
// TEST must be defined for the IRtest unittests to work. It will make some
|
||||
// methods virtual, which will be slightly slower, which is why it is optional.
|
||||
// #define DEBUG
|
||||
// #define TEST
|
||||
|
||||
// Results returned from the decoder
|
||||
class decode_results {
|
||||
public:
|
||||
int decode_type; // NEC, SONY, RC5, UNKNOWN
|
||||
union { // This is used for decoding Panasonic and Sharp data
|
||||
unsigned int panasonicAddress;
|
||||
unsigned int sharpAddress;
|
||||
};
|
||||
unsigned long value; // Decoded value
|
||||
int bits; // Number of bits in decoded value
|
||||
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
|
||||
int rawlen; // Number of records in rawbuf.
|
||||
};
|
||||
|
||||
// Values for decode_type
|
||||
#define NEC 1
|
||||
#define SONY 2
|
||||
#define RC5 3
|
||||
#define RC6 4
|
||||
#define DISH 5
|
||||
#define SHARP 6
|
||||
#define PANASONIC 7
|
||||
#define JVC 8
|
||||
#define SANYO 9
|
||||
#define MITSUBISHI 10
|
||||
#define SAMSUNG 11
|
||||
#define LG 12
|
||||
#define UNKNOWN -1
|
||||
|
||||
// Decoded value for NEC when a repeat code is received
|
||||
#define REPEAT 0xffffffff
|
||||
|
||||
// main class for receiving IR
|
||||
class IRrecv
|
||||
{
|
||||
public:
|
||||
IRrecv(int recvpin);
|
||||
void blink13(int blinkflag);
|
||||
int decode(decode_results *results);
|
||||
void enableIRIn();
|
||||
void resume();
|
||||
private:
|
||||
// These are called by decode
|
||||
int getRClevel(decode_results *results, int *offset, int *used, int t1);
|
||||
long decodeNEC(decode_results *results);
|
||||
long decodeSony(decode_results *results);
|
||||
long decodeSanyo(decode_results *results);
|
||||
long decodeMitsubishi(decode_results *results);
|
||||
long decodeRC5(decode_results *results);
|
||||
long decodeRC6(decode_results *results);
|
||||
long decodePanasonic(decode_results *results);
|
||||
long decodeLG(decode_results *results);
|
||||
long decodeJVC(decode_results *results);
|
||||
long decodeSAMSUNG(decode_results *results);
|
||||
long decodeHash(decode_results *results);
|
||||
int compare(unsigned int oldval, unsigned int newval);
|
||||
|
||||
}
|
||||
;
|
||||
|
||||
// Only used for testing; can remove virtual for shorter code
|
||||
#ifdef TEST
|
||||
#define VIRTUAL virtual
|
||||
#else
|
||||
#define VIRTUAL
|
||||
#endif
|
||||
|
||||
class IRsend
|
||||
{
|
||||
public:
|
||||
IRsend() {}
|
||||
void sendNEC(unsigned long data, int nbits);
|
||||
void sendSony(unsigned long data, int nbits);
|
||||
// Neither Sanyo nor Mitsubishi send is implemented yet
|
||||
// void sendSanyo(unsigned long data, int nbits);
|
||||
// void sendMitsubishi(unsigned long data, int nbits);
|
||||
void sendRaw(unsigned int buf[], int len, int hz);
|
||||
void sendRC5(unsigned long data, int nbits);
|
||||
void sendRC6(unsigned long data, int nbits);
|
||||
void sendDISH(unsigned long data, int nbits);
|
||||
void sendSharp(unsigned int address, unsigned int command);
|
||||
void sendSharpRaw(unsigned long data, int nbits);
|
||||
void sendPanasonic(unsigned int address, unsigned long data);
|
||||
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
|
||||
// private:
|
||||
void sendSAMSUNG(unsigned long data, int nbits);
|
||||
void enableIROut(int khz);
|
||||
VIRTUAL void mark(int usec);
|
||||
VIRTUAL void space(int usec);
|
||||
}
|
||||
;
|
||||
|
||||
// Some useful constants
|
||||
|
||||
#define USECPERTICK 50 // microseconds per clock interrupt tick
|
||||
#define RAWBUF 100 // Length of raw duration buffer
|
||||
|
||||
// Marks tend to be 100us too long, and spaces 100us too short
|
||||
// when received due to sensor lag.
|
||||
#define MARK_EXCESS 100
|
||||
|
||||
#endif
|
@ -0,0 +1,29 @@
|
||||
/*
|
||||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
Serial.println(results.value, HEX);
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
delay(100);
|
||||
}
|
@ -0,0 +1,85 @@
|
||||
/*
|
||||
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
* LG added by Darryl Smith (based on the JVC protocol)
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.print("Unknown encoding: ");
|
||||
}
|
||||
else if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
else if (results->decode_type == PANASONIC) {
|
||||
Serial.print("Decoded PANASONIC - Address: ");
|
||||
Serial.print(results->panasonicAddress,HEX);
|
||||
Serial.print(" Value: ");
|
||||
}
|
||||
else if (results->decode_type == LG) {
|
||||
Serial.print("Decoded LG: ");
|
||||
}
|
||||
else if (results->decode_type == JVC) {
|
||||
Serial.print("Decoded JVC: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
Serial.println(results.value, HEX);
|
||||
dump(&results);
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
@ -0,0 +1,85 @@
|
||||
/*
|
||||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int RELAY_PIN = 4;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
decode_results results;
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(RELAY_PIN, OUTPUT);
|
||||
pinMode(13, OUTPUT);
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
int on = 0;
|
||||
unsigned long last = millis();
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
// If it's been at least 1/4 second since the last
|
||||
// IR received, toggle the relay
|
||||
if (millis() - last > 250) {
|
||||
on = !on;
|
||||
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
|
||||
digitalWrite(13, on ? HIGH : LOW);
|
||||
dump(&results);
|
||||
}
|
||||
last = millis();
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
@ -0,0 +1,25 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (Serial.read() != -1) {
|
||||
for (int i = 0; i < 3; i++) {
|
||||
irsend.sendSony(0xa90, 12); // Sony TV power code
|
||||
delay(40);
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,190 @@
|
||||
/*
|
||||
* IRremote: IRtest unittest
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*
|
||||
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
|
||||
* You must then recompile the library by removing IRremote.o and restarting
|
||||
* the arduino IDE.
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
#include <IRremoteInt.h>
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
IRrecv irrecv(0);
|
||||
decode_results results;
|
||||
|
||||
class IRsendDummy :
|
||||
public IRsend
|
||||
{
|
||||
public:
|
||||
// For testing, just log the marks/spaces
|
||||
#define SENDLOG_LEN 128
|
||||
int sendlog[SENDLOG_LEN];
|
||||
int sendlogcnt;
|
||||
IRsendDummy() :
|
||||
IRsend() {
|
||||
}
|
||||
void reset() {
|
||||
sendlogcnt = 0;
|
||||
}
|
||||
void mark(int time) {
|
||||
sendlog[sendlogcnt] = time;
|
||||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
|
||||
}
|
||||
void space(int time) {
|
||||
sendlog[sendlogcnt] = -time;
|
||||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
|
||||
}
|
||||
// Copies the dummy buf into the interrupt buf
|
||||
void useDummyBuf() {
|
||||
int last = SPACE;
|
||||
irparams.rcvstate = STATE_STOP;
|
||||
irparams.rawlen = 1; // Skip the gap
|
||||
for (int i = 0 ; i < sendlogcnt; i++) {
|
||||
if (sendlog[i] < 0) {
|
||||
if (last == MARK) {
|
||||
// New space
|
||||
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
|
||||
last = SPACE;
|
||||
}
|
||||
else {
|
||||
// More space
|
||||
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
|
||||
}
|
||||
}
|
||||
else if (sendlog[i] > 0) {
|
||||
if (last == SPACE) {
|
||||
// New mark
|
||||
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
|
||||
last = MARK;
|
||||
}
|
||||
else {
|
||||
// More mark
|
||||
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (irparams.rawlen % 2) {
|
||||
irparams.rawlen--; // Remove trailing space
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
IRsendDummy irsenddummy;
|
||||
|
||||
void verify(unsigned long val, int bits, int type) {
|
||||
irsenddummy.useDummyBuf();
|
||||
irrecv.decode(&results);
|
||||
Serial.print("Testing ");
|
||||
Serial.print(val, HEX);
|
||||
if (results.value == val && results.bits == bits && results.decode_type == type) {
|
||||
Serial.println(": OK");
|
||||
}
|
||||
else {
|
||||
Serial.println(": Error");
|
||||
dump(&results);
|
||||
}
|
||||
}
|
||||
|
||||
void testNEC(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendNEC(val, bits);
|
||||
verify(val, bits, NEC);
|
||||
}
|
||||
void testSony(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendSony(val, bits);
|
||||
verify(val, bits, SONY);
|
||||
}
|
||||
void testRC5(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendRC5(val, bits);
|
||||
verify(val, bits, RC5);
|
||||
}
|
||||
void testRC6(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendRC6(val, bits);
|
||||
verify(val, bits, RC6);
|
||||
}
|
||||
|
||||
void test() {
|
||||
Serial.println("NEC tests");
|
||||
testNEC(0x00000000, 32);
|
||||
testNEC(0xffffffff, 32);
|
||||
testNEC(0xaaaaaaaa, 32);
|
||||
testNEC(0x55555555, 32);
|
||||
testNEC(0x12345678, 32);
|
||||
Serial.println("Sony tests");
|
||||
testSony(0xfff, 12);
|
||||
testSony(0x000, 12);
|
||||
testSony(0xaaa, 12);
|
||||
testSony(0x555, 12);
|
||||
testSony(0x123, 12);
|
||||
Serial.println("RC5 tests");
|
||||
testRC5(0xfff, 12);
|
||||
testRC5(0x000, 12);
|
||||
testRC5(0xaaa, 12);
|
||||
testRC5(0x555, 12);
|
||||
testRC5(0x123, 12);
|
||||
Serial.println("RC6 tests");
|
||||
testRC6(0xfffff, 20);
|
||||
testRC6(0x00000, 20);
|
||||
testRC6(0xaaaaa, 20);
|
||||
testRC6(0x55555, 20);
|
||||
testRC6(0x12345, 20);
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
test();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
}
|
@ -0,0 +1,290 @@
|
||||
/*
|
||||
* Test send/receive functions of IRremote, using a pair of Arduinos.
|
||||
*
|
||||
* Arduino #1 should have an IR LED connected to the send pin (3).
|
||||
* Arduino #2 should have an IR detector/demodulator connected to the
|
||||
* receive pin (11) and a visible LED connected to pin 3.
|
||||
*
|
||||
* The cycle:
|
||||
* Arduino #1 will wait 2 seconds, then run through the tests.
|
||||
* It repeats this forever.
|
||||
* Arduino #2 will wait for at least one second of no signal
|
||||
* (to synchronize with #1). It will then wait for the same test
|
||||
* signals. It will log all the status to the serial port. It will
|
||||
* also indicate status through the LED, which will flash each time a test
|
||||
* is completed. If there is an error, it will light up for 5 seconds.
|
||||
*
|
||||
* The test passes if the LED flashes 19 times, pauses, and then repeats.
|
||||
* The test fails if the LED lights for 5 seconds.
|
||||
*
|
||||
* The test software automatically decides which board is the sender and which is
|
||||
* the receiver by looking for an input on the send pin, which will indicate
|
||||
* the sender. You should hook the serial port to the receiver for debugging.
|
||||
*
|
||||
* Copyright 2010 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int LED_PIN = 3;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
IRsend irsend;
|
||||
|
||||
decode_results results;
|
||||
|
||||
#define RECEIVER 1
|
||||
#define SENDER 2
|
||||
#define ERROR 3
|
||||
|
||||
int mode;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
// Check RECV_PIN to decide if we're RECEIVER or SENDER
|
||||
if (digitalRead(RECV_PIN) == HIGH) {
|
||||
mode = RECEIVER;
|
||||
irrecv.enableIRIn();
|
||||
pinMode(LED_PIN, OUTPUT);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
Serial.println("Receiver mode");
|
||||
}
|
||||
else {
|
||||
mode = SENDER;
|
||||
Serial.println("Sender mode");
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for the gap between tests, to synchronize with
|
||||
// the sender.
|
||||
// Specifically, wait for a signal followed by a gap of at last gap ms.
|
||||
void waitForGap(int gap) {
|
||||
Serial.println("Waiting for gap");
|
||||
while (1) {
|
||||
while (digitalRead(RECV_PIN) == LOW) {
|
||||
}
|
||||
unsigned long time = millis();
|
||||
while (digitalRead(RECV_PIN) == HIGH) {
|
||||
if (millis() - time > gap) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
|
||||
// Test send or receive.
|
||||
// If mode is SENDER, send a code of the specified type, value, and bits
|
||||
// If mode is RECEIVER, receive a code and verify that it is of the
|
||||
// specified type, value, and bits. For success, the LED is flashed;
|
||||
// for failure, the mode is set to ERROR.
|
||||
// The motivation behind this method is that the sender and the receiver
|
||||
// can do the same test calls, and the mode variable indicates whether
|
||||
// to send or receive.
|
||||
void test(char *label, int type, unsigned long value, int bits) {
|
||||
if (mode == SENDER) {
|
||||
Serial.println(label);
|
||||
if (type == NEC) {
|
||||
irsend.sendNEC(value, bits);
|
||||
}
|
||||
else if (type == SONY) {
|
||||
irsend.sendSony(value, bits);
|
||||
}
|
||||
else if (type == RC5) {
|
||||
irsend.sendRC5(value, bits);
|
||||
}
|
||||
else if (type == RC6) {
|
||||
irsend.sendRC6(value, bits);
|
||||
}
|
||||
else {
|
||||
Serial.print(label);
|
||||
Serial.println("Bad type!");
|
||||
}
|
||||
delay(200);
|
||||
}
|
||||
else if (mode == RECEIVER) {
|
||||
irrecv.resume(); // Receive the next value
|
||||
unsigned long max_time = millis() + 30000;
|
||||
Serial.print(label);
|
||||
|
||||
// Wait for decode or timeout
|
||||
while (!irrecv.decode(&results)) {
|
||||
if (millis() > max_time) {
|
||||
Serial.println("Timeout receiving data");
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (type == results.decode_type && value == results.value && bits == results.bits) {
|
||||
Serial.println (": OK");
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(20);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
}
|
||||
else {
|
||||
Serial.println(": BAD");
|
||||
dump(&results);
|
||||
mode = ERROR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test raw send or receive. This is similar to the test method,
|
||||
// except it send/receives raw data.
|
||||
void testRaw(char *label, unsigned int *rawbuf, int rawlen) {
|
||||
if (mode == SENDER) {
|
||||
Serial.println(label);
|
||||
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
|
||||
delay(200);
|
||||
}
|
||||
else if (mode == RECEIVER ) {
|
||||
irrecv.resume(); // Receive the next value
|
||||
unsigned long max_time = millis() + 30000;
|
||||
Serial.print(label);
|
||||
|
||||
// Wait for decode or timeout
|
||||
while (!irrecv.decode(&results)) {
|
||||
if (millis() > max_time) {
|
||||
Serial.println("Timeout receiving data");
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Received length has extra first element for gap
|
||||
if (rawlen != results.rawlen - 1) {
|
||||
Serial.print("Bad raw length ");
|
||||
Serial.println(results.rawlen, DEC);
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < rawlen; i++) {
|
||||
long got = results.rawbuf[i+1] * USECPERTICK;
|
||||
// Adjust for extra duration of marks
|
||||
if (i % 2 == 0) {
|
||||
got -= MARK_EXCESS;
|
||||
}
|
||||
else {
|
||||
got += MARK_EXCESS;
|
||||
}
|
||||
// See if close enough, within 25%
|
||||
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
|
||||
Serial.println(": BAD");
|
||||
dump(&results);
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
Serial.println (": OK");
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(20);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
}
|
||||
}
|
||||
|
||||
// This is the raw data corresponding to NEC 0x12345678
|
||||
unsigned int sendbuf[] = { /* NEC format */
|
||||
9000, 4500,
|
||||
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
|
||||
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
|
||||
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
|
||||
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
|
||||
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
|
||||
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
|
||||
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
|
||||
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
|
||||
560};
|
||||
|
||||
void loop() {
|
||||
if (mode == SENDER) {
|
||||
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
|
||||
}
|
||||
else if (mode == RECEIVER) {
|
||||
waitForGap(1000);
|
||||
}
|
||||
else if (mode == ERROR) {
|
||||
// Light up for 5 seconds for error
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(5000);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
mode = RECEIVER; // Try again
|
||||
return;
|
||||
}
|
||||
|
||||
// The test suite.
|
||||
test("SONY1", SONY, 0x123, 12);
|
||||
test("SONY2", SONY, 0x000, 12);
|
||||
test("SONY3", SONY, 0xfff, 12);
|
||||
test("SONY4", SONY, 0x12345, 20);
|
||||
test("SONY5", SONY, 0x00000, 20);
|
||||
test("SONY6", SONY, 0xfffff, 20);
|
||||
test("NEC1", NEC, 0x12345678, 32);
|
||||
test("NEC2", NEC, 0x00000000, 32);
|
||||
test("NEC3", NEC, 0xffffffff, 32);
|
||||
test("NEC4", NEC, REPEAT, 32);
|
||||
test("RC51", RC5, 0x12345678, 32);
|
||||
test("RC52", RC5, 0x0, 32);
|
||||
test("RC53", RC5, 0xffffffff, 32);
|
||||
test("RC61", RC6, 0x12345678, 32);
|
||||
test("RC62", RC6, 0x0, 32);
|
||||
test("RC63", RC6, 0xffffffff, 32);
|
||||
|
||||
// Tests of raw sending and receiving.
|
||||
// First test sending raw and receiving raw.
|
||||
// Then test sending raw and receiving decoded NEC
|
||||
// Then test sending NEC and receiving raw
|
||||
testRaw("RAW1", sendbuf, 67);
|
||||
if (mode == SENDER) {
|
||||
testRaw("RAW2", sendbuf, 67);
|
||||
test("RAW3", NEC, 0x12345678, 32);
|
||||
}
|
||||
else {
|
||||
test("RAW2", NEC, 0x12345678, 32);
|
||||
testRaw("RAW3", sendbuf, 67);
|
||||
}
|
||||
}
|
@ -0,0 +1,29 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
#include <IRremote.h>
|
||||
|
||||
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
|
||||
#define PanasonicPower 0x100BCBD // Panasonic Power button
|
||||
|
||||
#define JVCPower 0xC5E8
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
}
|
||||
|
||||
void loop() {
|
||||
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
|
||||
|
||||
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
|
||||
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
|
||||
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
|
||||
delayMicroseconds(50);
|
||||
}
|
@ -0,0 +1,51 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For IRremote
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
decode_results KEYWORD1
|
||||
IRrecv KEYWORD1
|
||||
IRsend KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
blink13 KEYWORD2
|
||||
decode KEYWORD2
|
||||
enableIRIn KEYWORD2
|
||||
resume KEYWORD2
|
||||
enableIROut KEYWORD2
|
||||
sendNEC KEYWORD2
|
||||
sendSony KEYWORD2
|
||||
sendSanyo KEYWORD2
|
||||
sendMitsubishi KEYWORD2
|
||||
sendRaw KEYWORD2
|
||||
sendRC5 KEYWORD2
|
||||
sendRC6 KEYWORD2
|
||||
sendDISH KEYWORD2
|
||||
sendSharp KEYWORD2
|
||||
sendSharpRaw KEYWORD2
|
||||
sendPanasonic KEYWORD2
|
||||
sendJVC KEYWORD2
|
||||
|
||||
#
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
||||
|
||||
NEC LITERAL1
|
||||
SONY LITERAL1
|
||||
SANYO LITERAL1
|
||||
MITSUBISHI LITERAL1
|
||||
RC5 LITERAL1
|
||||
RC6 LITERAL1
|
||||
DISH LITERAL1
|
||||
SHARP LITERAL1
|
||||
PANASONIC LITERAL1
|
||||
JVC LITERAL1
|
||||
UNKNOWN LITERAL1
|
||||
REPEAT LITERAL1
|
14
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/readme
Executable file
14
projects/elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/readme
Executable file
@ -0,0 +1,14 @@
|
||||
This is the IRremote library for the Arduino.
|
||||
|
||||
To download from github (http://github.com/shirriff/Arduino-IRremote), click on the "Downloads" link in the upper right, click "Download as zip", and get a zip file. Unzip it and rename the directory shirriff-Arduino-IRremote-nnn to IRremote
|
||||
|
||||
To install, move the downloaded IRremote directory to:
|
||||
arduino-1.x/libraries/IRremote
|
||||
where arduino-1.x is your Arduino installation directory
|
||||
|
||||
After installation you should have files such as:
|
||||
arduino-1.x/libraries/IRremote/IRremote.cpp
|
||||
|
||||
For details on the library see the Wiki on github or the blog post http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
|
||||
Copyright 2009-2012 Ken Shirriff
|
BIN
projects/elegoo-kit-lessons/Lesson 14 LCD Display/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 14 LCD Display/.DS_Store
vendored
Normal file
Binary file not shown.
63
projects/elegoo-kit-lessons/Lesson 14 LCD Display/HelloWorld/HelloWorld.ino
Executable file
63
projects/elegoo-kit-lessons/Lesson 14 LCD Display/HelloWorld/HelloWorld.ino
Executable file
@ -0,0 +1,63 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
/*
|
||||
LiquidCrystal Library - Hello World
|
||||
|
||||
Demonstrates the use a 16x2 LCD display. The LiquidCrystal
|
||||
library works with all LCD displays that are compatible with the
|
||||
Hitachi HD44780 driver. There are many of them out there, and you
|
||||
can usually tell them by the 16-pin interface.
|
||||
|
||||
This sketch prints "Hello World!" to the LCD
|
||||
and shows the time.
|
||||
|
||||
The circuit:
|
||||
* LCD RS pin to digital pin 7
|
||||
* LCD Enable pin to digital pin 8
|
||||
* LCD D4 pin to digital pin 9
|
||||
* LCD D5 pin to digital pin 10
|
||||
* LCD D6 pin to digital pin 11
|
||||
* LCD D7 pin to digital pin 12
|
||||
* LCD R/W pin to ground
|
||||
* LCD VSS pin to ground
|
||||
* LCD VCC pin to 5V
|
||||
* 10K resistor:
|
||||
* ends to +5V and ground
|
||||
* wiper to LCD VO pin (pin 3)
|
||||
|
||||
Library originally added 18 Apr 2008
|
||||
by David A. Mellis
|
||||
library modified 5 Jul 2009
|
||||
by Limor Fried (http://www.ladyada.net)
|
||||
example added 9 Jul 2009
|
||||
by Tom Igoe
|
||||
modified 22 Nov 2010
|
||||
by Tom Igoe
|
||||
|
||||
This example code is in the public domain.
|
||||
|
||||
http://www.arduino.cc/en/Tutorial/LiquidCrystal
|
||||
*/
|
||||
|
||||
// include the library code:
|
||||
#include <LiquidCrystal.h>
|
||||
|
||||
// initialize the library with the numbers of the interface pins
|
||||
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
|
||||
|
||||
void setup() {
|
||||
// set up the LCD's number of columns and rows:
|
||||
lcd.begin(16, 2);
|
||||
// Print a message to the LCD.
|
||||
lcd.print("Hello, World!");
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// set the cursor to column 0, line 1
|
||||
// (note: line 1 is the second row, since counting begins with 0):
|
||||
lcd.setCursor(0, 1);
|
||||
// print the number of seconds since reset:
|
||||
lcd.print(millis() / 1000);
|
||||
}
|
||||
|
BIN
projects/elegoo-kit-lessons/Lesson 14 LCD Display/LiquidCrystal.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 14 LCD Display/LiquidCrystal.zip
Executable file
Binary file not shown.
BIN
projects/elegoo-kit-lessons/Lesson 15 Thermometer/LiquidCrystal.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 15 Thermometer/LiquidCrystal.zip
Executable file
Binary file not shown.
@ -0,0 +1,36 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
#include <LiquidCrystal.h>
|
||||
int tempPin = 0;
|
||||
// BS E D4 D5 D6 D7
|
||||
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
|
||||
void setup()
|
||||
{
|
||||
lcd.begin(16, 2);
|
||||
}
|
||||
void loop()
|
||||
{
|
||||
int tempReading = analogRead(tempPin);
|
||||
// This is OK
|
||||
double tempK = log(10000.0 * ((1024.0 / tempReading - 1)));
|
||||
tempK = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * tempK * tempK )) * tempK ); // Temp Kelvin
|
||||
float tempC = tempK - 273.15; // Convert Kelvin to Celcius
|
||||
float tempF = (tempC * 9.0)/ 5.0 + 32.0; // Convert Celcius to Fahrenheit
|
||||
/* replaced
|
||||
float tempVolts = tempReading * 5.0 / 1024.0;
|
||||
float tempC = (tempVolts - 0.5) * 10.0;
|
||||
float tempF = tempC * 9.0 / 5.0 + 32.0;
|
||||
*/
|
||||
// Display Temperature in C
|
||||
lcd.setCursor(0, 0);
|
||||
lcd.print("Temp C ");
|
||||
// Display Temperature in F
|
||||
//lcd.print("Temp F ");
|
||||
lcd.setCursor(6, 0);
|
||||
// Display Temperature in C
|
||||
lcd.print(tempC);
|
||||
// Display Temperature in F
|
||||
//lcd.print(tempF);
|
||||
delay(500);
|
||||
}
|
@ -0,0 +1,37 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
int tDelay = 100;
|
||||
int latchPin = 11; // (11) ST_CP [RCK] on 74HC595
|
||||
int clockPin = 9; // (9) SH_CP [SCK] on 74HC595
|
||||
int dataPin = 12; // (12) DS [S1] on 74HC595
|
||||
|
||||
byte leds = 0;
|
||||
|
||||
void updateShiftRegister()
|
||||
{
|
||||
digitalWrite(latchPin, LOW);
|
||||
shiftOut(dataPin, clockPin, LSBFIRST, leds);
|
||||
digitalWrite(latchPin, HIGH);
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(latchPin, OUTPUT);
|
||||
pinMode(dataPin, OUTPUT);
|
||||
pinMode(clockPin, OUTPUT);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
leds = 0;
|
||||
updateShiftRegister();
|
||||
delay(tDelay);
|
||||
for (int i = 0; i < 8; i++)
|
||||
{
|
||||
bitSet(leds, i);
|
||||
updateShiftRegister();
|
||||
delay(tDelay);
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,48 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
int latchPin = 11;
|
||||
int clockPin = 9;
|
||||
int dataPin = 12;
|
||||
|
||||
byte leds = 0;
|
||||
void updateShiftRegister()
|
||||
{
|
||||
digitalWrite(latchPin, LOW);
|
||||
shiftOut(dataPin, clockPin, LSBFIRST, leds);
|
||||
digitalWrite(latchPin, HIGH);
|
||||
}
|
||||
void setup()
|
||||
{
|
||||
pinMode(latchPin, OUTPUT);
|
||||
pinMode(dataPin, OUTPUT);
|
||||
pinMode(clockPin, OUTPUT);
|
||||
updateShiftRegister();
|
||||
Serial.begin(9600);
|
||||
while (! Serial); // Wait untilSerial is ready - Leonardo
|
||||
Serial.println("Enter LED Number 0 to 7 or 'x' to clear");
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
if (Serial.available())
|
||||
{
|
||||
char ch = Serial.read();
|
||||
if (ch >= '0' && ch <= '7')
|
||||
{
|
||||
int led = ch - '0';
|
||||
bitSet(leds, led);
|
||||
updateShiftRegister();
|
||||
Serial.print("Turned on LED ");
|
||||
Serial.println(led);
|
||||
}
|
||||
if (ch == 'x')
|
||||
{
|
||||
leds = 0;
|
||||
updateShiftRegister();
|
||||
Serial.println("Cleared");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
36
projects/elegoo-kit-lessons/Lesson 18 Photocell/Photocell/Photocell.ino
Executable file
36
projects/elegoo-kit-lessons/Lesson 18 Photocell/Photocell/Photocell.ino
Executable file
@ -0,0 +1,36 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.9
|
||||
|
||||
int lightPin = 0;
|
||||
int latchPin = 11;
|
||||
int clockPin = 9;
|
||||
int dataPin = 12;
|
||||
|
||||
int leds = 0;
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(latchPin, OUTPUT);
|
||||
pinMode(dataPin, OUTPUT);
|
||||
pinMode(clockPin, OUTPUT);
|
||||
}
|
||||
void updateShiftRegister()
|
||||
{
|
||||
digitalWrite(latchPin, LOW);
|
||||
shiftOut(dataPin, clockPin, LSBFIRST, leds);
|
||||
digitalWrite(latchPin, HIGH);
|
||||
}
|
||||
void loop()
|
||||
{
|
||||
int reading = analogRead(lightPin);
|
||||
int numLEDSLit = reading / 57; //1023 / 9 / 2
|
||||
if (numLEDSLit > 8) numLEDSLit = 8;
|
||||
leds = 0; // no LEDs lit to start
|
||||
for (int i = 0; i < numLEDSLit; i++)
|
||||
{
|
||||
leds = leds + (1 << i); // sets the i'th bit
|
||||
}
|
||||
updateShiftRegister();
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,55 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.12
|
||||
|
||||
// define the LED digit patterns, from 0 - 9
|
||||
// 1 = LED on, 0 = LED off, in this order:
|
||||
// 74HC595 pin Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7
|
||||
// Mapping to a,b,c,d,e,f,g of Seven-Segment LED
|
||||
byte seven_seg_digits[10] = { B11111100, // = 0
|
||||
B01100000, // = 1
|
||||
B11011010, // = 2
|
||||
B11110010, // = 3
|
||||
B01100110, // = 4
|
||||
B10110110, // = 5
|
||||
B10111110, // = 6
|
||||
B11100000, // = 7
|
||||
B11111110, // = 8
|
||||
B11100110 // = 9
|
||||
};
|
||||
|
||||
// connect to the ST_CP of 74HC595 (pin 3,latch pin)
|
||||
int latchPin = 3;
|
||||
// connect to the SH_CP of 74HC595 (pin 4, clock pin)
|
||||
int clockPin = 4;
|
||||
// connect to the DS of 74HC595 (pin 2)
|
||||
int dataPin = 2;
|
||||
|
||||
void setup() {
|
||||
// Set latchPin, clockPin, dataPin as output
|
||||
pinMode(latchPin, OUTPUT);
|
||||
pinMode(clockPin, OUTPUT);
|
||||
pinMode(dataPin, OUTPUT);
|
||||
}
|
||||
|
||||
// display a number on the digital segment display
|
||||
void sevenSegWrite(byte digit) {
|
||||
// set the latchPin to low potential, before sending data
|
||||
digitalWrite(latchPin, LOW);
|
||||
|
||||
// the original data (bit pattern)
|
||||
shiftOut(dataPin, clockPin, LSBFIRST, seven_seg_digits[digit]);
|
||||
|
||||
// set the latchPin to high potential, after sending data
|
||||
digitalWrite(latchPin, HIGH);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// count from 9 to 0
|
||||
for (byte digit = 10; digit > 0; --digit) {
|
||||
delay(1000);
|
||||
sevenSegWrite(digit - 1);
|
||||
}
|
||||
|
||||
// suspend 4 seconds
|
||||
delay(3000);
|
||||
}
|
@ -0,0 +1,56 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.12
|
||||
|
||||
int latch=9; //74HC595 pin 9 STCP
|
||||
int clock=10; //74HC595 pin 10 SHCP
|
||||
int data=8; //74HC595 pin 8 DS
|
||||
|
||||
unsigned char table[]=
|
||||
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c
|
||||
,0x39,0x5e,0x79,0x71,0x00};
|
||||
|
||||
void setup() {
|
||||
pinMode(latch,OUTPUT);
|
||||
pinMode(clock,OUTPUT);
|
||||
pinMode(data,OUTPUT);
|
||||
}
|
||||
void Display(unsigned char num)
|
||||
{
|
||||
|
||||
digitalWrite(latch,LOW);
|
||||
shiftOut(data,clock,MSBFIRST,table[num]);
|
||||
digitalWrite(latch,HIGH);
|
||||
|
||||
}
|
||||
void loop() {
|
||||
Display(1);
|
||||
delay(500);
|
||||
Display(2);
|
||||
delay(500);
|
||||
Display(3);
|
||||
delay(500);
|
||||
Display(4);
|
||||
delay(500);
|
||||
Display(5);
|
||||
delay(500);
|
||||
Display(6);
|
||||
delay(500);
|
||||
Display(7);
|
||||
delay(500);
|
||||
Display(8);
|
||||
delay(500);
|
||||
Display(9);
|
||||
delay(500);
|
||||
Display(10);
|
||||
delay(500);
|
||||
Display(11);
|
||||
delay(500);
|
||||
Display(12);
|
||||
delay(500);
|
||||
Display(13);
|
||||
delay(500);
|
||||
Display(14);
|
||||
delay(500);
|
||||
Display(15);
|
||||
delay(500);
|
||||
}
|
74
projects/elegoo-kit-lessons/Lesson 21 DC Motors/DC_Motor/DC_Motor.ino
Executable file
74
projects/elegoo-kit-lessons/Lesson 21 DC Motors/DC_Motor/DC_Motor.ino
Executable file
@ -0,0 +1,74 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.12
|
||||
|
||||
/************************
|
||||
Exercise the motor using
|
||||
the L293D chip
|
||||
************************/
|
||||
|
||||
#define ENABLE 5
|
||||
#define DIRA 3
|
||||
#define DIRB 4
|
||||
|
||||
int i;
|
||||
|
||||
void setup() {
|
||||
//---set pin direction
|
||||
pinMode(ENABLE,OUTPUT);
|
||||
pinMode(DIRA,OUTPUT);
|
||||
pinMode(DIRB,OUTPUT);
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
//---back and forth example
|
||||
Serial.println("One way, then reverse");
|
||||
digitalWrite(ENABLE,HIGH); // enable on
|
||||
for (i=0;i<5;i++) {
|
||||
digitalWrite(DIRA,HIGH); //one way
|
||||
digitalWrite(DIRB,LOW);
|
||||
delay(500);
|
||||
digitalWrite(DIRA,LOW); //reverse
|
||||
digitalWrite(DIRB,HIGH);
|
||||
delay(500);
|
||||
}
|
||||
digitalWrite(ENABLE,LOW); // disable
|
||||
delay(2000);
|
||||
|
||||
Serial.println("fast Slow example");
|
||||
//---fast/slow stop example
|
||||
digitalWrite(ENABLE,HIGH); //enable on
|
||||
digitalWrite(DIRA,HIGH); //one way
|
||||
digitalWrite(DIRB,LOW);
|
||||
delay(3000);
|
||||
digitalWrite(ENABLE,LOW); //slow stop
|
||||
delay(1000);
|
||||
digitalWrite(ENABLE,HIGH); //enable on
|
||||
digitalWrite(DIRA,LOW); //one way
|
||||
digitalWrite(DIRB,HIGH);
|
||||
delay(3000);
|
||||
digitalWrite(DIRA,LOW); //fast stop
|
||||
delay(2000);
|
||||
|
||||
Serial.println("PWM full then slow");
|
||||
//---PWM example, full speed then slow
|
||||
analogWrite(ENABLE,255); //enable on
|
||||
digitalWrite(DIRA,HIGH); //one way
|
||||
digitalWrite(DIRB,LOW);
|
||||
delay(2000);
|
||||
analogWrite(ENABLE,180); //half speed
|
||||
delay(2000);
|
||||
analogWrite(ENABLE,128); //half speed
|
||||
delay(2000);
|
||||
analogWrite(ENABLE,50); //half speed
|
||||
delay(2000);
|
||||
analogWrite(ENABLE,128); //half speed
|
||||
delay(2000);
|
||||
analogWrite(ENABLE,180); //half speed
|
||||
delay(2000);
|
||||
analogWrite(ENABLE,255); //half speed
|
||||
delay(2000);
|
||||
digitalWrite(ENABLE,LOW); //all done
|
||||
delay(10000);
|
||||
}
|
||||
|
49
projects/elegoo-kit-lessons/Lesson 22 Relay/Relay/Relay.ino
Executable file
49
projects/elegoo-kit-lessons/Lesson 22 Relay/Relay/Relay.ino
Executable file
@ -0,0 +1,49 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.12
|
||||
|
||||
/************************
|
||||
Exercise the motor using
|
||||
the L293D chip
|
||||
************************/
|
||||
|
||||
#define ENABLE 5
|
||||
#define DIRA 3
|
||||
#define DIRB 4
|
||||
|
||||
int i;
|
||||
|
||||
void setup() {
|
||||
//---set pin direction
|
||||
pinMode(ENABLE,OUTPUT);
|
||||
pinMode(DIRA,OUTPUT);
|
||||
pinMode(DIRB,OUTPUT);
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
//---back and forth example
|
||||
Serial.println("One way, then reverse");
|
||||
digitalWrite(ENABLE,HIGH); // enable on
|
||||
for (i=0;i<5;i++) {
|
||||
digitalWrite(DIRA,HIGH); //one way
|
||||
digitalWrite(DIRB,LOW);
|
||||
delay(750);
|
||||
digitalWrite(DIRA,LOW); //reverse
|
||||
digitalWrite(DIRB,HIGH);
|
||||
delay(750);
|
||||
}
|
||||
digitalWrite(ENABLE,LOW); // disable
|
||||
delay(3000);
|
||||
for (i=0;i<5;i++) {
|
||||
digitalWrite(DIRA,HIGH); //one way
|
||||
digitalWrite(DIRB,LOW);
|
||||
delay(750);
|
||||
digitalWrite(DIRA,LOW); //reverse
|
||||
digitalWrite(DIRB,HIGH);
|
||||
delay(750);
|
||||
}
|
||||
digitalWrite(ENABLE,LOW); // disable
|
||||
delay(3000);
|
||||
}
|
||||
|
BIN
projects/elegoo-kit-lessons/Lesson 23 Stepper Motor/Stepper.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 23 Stepper Motor/Stepper.zip
Executable file
Binary file not shown.
@ -0,0 +1,40 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.12
|
||||
|
||||
/*
|
||||
Stepper Motor Control - one revolution
|
||||
|
||||
This program drives a unipolar or bipolar stepper motor.
|
||||
The motor is attached to digital pins 8 - 11 of the Arduino.
|
||||
|
||||
The motor should revolve one revolution in one direction, then
|
||||
one revolution in the other direction.
|
||||
|
||||
*/
|
||||
|
||||
#include <Stepper.h>
|
||||
|
||||
const int stepsPerRevolution = 1500; // change this to fit the number of steps per revolution
|
||||
|
||||
// initialize the stepper library on pins 8 through 11:
|
||||
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);
|
||||
|
||||
void setup() {
|
||||
// set the speed at 20 rpm:
|
||||
myStepper.setSpeed(20);
|
||||
// initialize the serial port:
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// step one revolution in one direction:
|
||||
Serial.println("clockwise");
|
||||
myStepper.step(stepsPerRevolution);
|
||||
delay(500);
|
||||
|
||||
// step one revolution in the other direction:
|
||||
Serial.println("counterclockwise");
|
||||
myStepper.step(-stepsPerRevolution);
|
||||
delay(500);
|
||||
}
|
||||
|
Binary file not shown.
Binary file not shown.
@ -0,0 +1,58 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.12
|
||||
|
||||
#include "Stepper.h"
|
||||
#include "IRremote.h"
|
||||
|
||||
/*----- Variables, Pins -----*/
|
||||
#define STEPS 32 // Number of steps per revolution of Internal shaft
|
||||
int Steps2Take; // 2048 = 1 Revolution
|
||||
int receiver = 12; // Signal Pin of IR receiver to Arduino Digital Pin 6
|
||||
|
||||
/*-----( Declare objects )-----*/
|
||||
// Setup of proper sequencing for Motor Driver Pins
|
||||
// In1, In2, In3, In4 in the sequence 1-3-2-4
|
||||
|
||||
Stepper small_stepper(STEPS, 8, 10, 9, 11);
|
||||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
||||
decode_results results; // create instance of 'decode_results'
|
||||
|
||||
void setup()
|
||||
{
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
if (irrecv.decode(&results)) // have we received an IR signal?
|
||||
|
||||
{
|
||||
switch(results.value)
|
||||
|
||||
{
|
||||
|
||||
case 0xFFA857: // VOL+ button pressed
|
||||
small_stepper.setSpeed(500); //Max seems to be 500
|
||||
Steps2Take = 2048; // Rotate CW
|
||||
small_stepper.step(Steps2Take);
|
||||
delay(2000);
|
||||
break;
|
||||
|
||||
case 0xFF629D: // VOL- button pressed
|
||||
small_stepper.setSpeed(500);
|
||||
Steps2Take = -2048; // Rotate CCW
|
||||
small_stepper.step(Steps2Take);
|
||||
delay(2000);
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
irrecv.resume(); // receive the next value
|
||||
digitalWrite(8, LOW);
|
||||
digitalWrite(9, LOW);
|
||||
digitalWrite(10, LOW);
|
||||
digitalWrite(11, LOW);
|
||||
}
|
||||
|
||||
|
||||
}/* --end main loop -- */
|
83
projects/elegoo-kit-lessons/Lesson 4 RGB LED/RGB_LED/RGB_LED.ino
Executable file
83
projects/elegoo-kit-lessons/Lesson 4 RGB LED/RGB_LED/RGB_LED.ino
Executable file
@ -0,0 +1,83 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.8
|
||||
|
||||
// Define Pins
|
||||
#define BLUE 3
|
||||
#define GREEN 5
|
||||
#define RED 6
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(RED, OUTPUT);
|
||||
pinMode(GREEN, OUTPUT);
|
||||
pinMode(BLUE, OUTPUT);
|
||||
digitalWrite(RED, HIGH);
|
||||
digitalWrite(GREEN, LOW);
|
||||
digitalWrite(BLUE, LOW);
|
||||
}
|
||||
|
||||
// define variables
|
||||
int redValue;
|
||||
int greenValue;
|
||||
int blueValue;
|
||||
|
||||
// main loop
|
||||
void loop()
|
||||
{
|
||||
#define delayTime 10 // fading time between colors
|
||||
|
||||
redValue = 255; // choose a value between 1 and 255 to change the color.
|
||||
greenValue = 0;
|
||||
blueValue = 0;
|
||||
|
||||
// this is unnecessary as we've either turned on RED in SETUP
|
||||
// or in the previous loop ... regardless, this turns RED off
|
||||
// analogWrite(RED, 0);
|
||||
// delay(1000);
|
||||
|
||||
for(int i = 0; i < 255; i += 1) // fades out red bring green full when i=255
|
||||
{
|
||||
redValue -= 1;
|
||||
greenValue += 1;
|
||||
// The following was reversed, counting in the wrong directions
|
||||
// analogWrite(RED, 255 - redValue);
|
||||
// analogWrite(GREEN, 255 - greenValue);
|
||||
analogWrite(RED, redValue);
|
||||
analogWrite(GREEN, greenValue);
|
||||
delay(delayTime);
|
||||
}
|
||||
|
||||
redValue = 0;
|
||||
greenValue = 255;
|
||||
blueValue = 0;
|
||||
|
||||
for(int i = 0; i < 255; i += 1) // fades out green bring blue full when i=255
|
||||
{
|
||||
greenValue -= 1;
|
||||
blueValue += 1;
|
||||
// The following was reversed, counting in the wrong directions
|
||||
// analogWrite(GREEN, 255 - greenValue);
|
||||
// analogWrite(BLUE, 255 - blueValue);
|
||||
analogWrite(GREEN, greenValue);
|
||||
analogWrite(BLUE, blueValue);
|
||||
delay(delayTime);
|
||||
}
|
||||
|
||||
redValue = 0;
|
||||
greenValue = 0;
|
||||
blueValue = 255;
|
||||
|
||||
for(int i = 0; i < 255; i += 1) // fades out blue bring red full when i=255
|
||||
{
|
||||
// The following code has been rearranged to match the other two similar sections
|
||||
blueValue -= 1;
|
||||
redValue += 1;
|
||||
// The following was reversed, counting in the wrong directions
|
||||
// analogWrite(BLUE, 255 - blueValue);
|
||||
// analogWrite(RED, 255 - redValue);
|
||||
analogWrite(BLUE, blueValue);
|
||||
analogWrite(RED, redValue);
|
||||
delay(delayTime);
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,27 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.08
|
||||
|
||||
int ledPin = 5;
|
||||
int buttonApin = 9;
|
||||
int buttonBpin = 8;
|
||||
|
||||
byte leds = 0;
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(ledPin, OUTPUT);
|
||||
pinMode(buttonApin, INPUT_PULLUP);
|
||||
pinMode(buttonBpin, INPUT_PULLUP);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
if (digitalRead(buttonApin) == LOW)
|
||||
{
|
||||
digitalWrite(ledPin, HIGH);
|
||||
}
|
||||
if (digitalRead(buttonBpin) == LOW)
|
||||
{
|
||||
digitalWrite(ledPin, LOW);
|
||||
}
|
||||
}
|
31
projects/elegoo-kit-lessons/Lesson 6 Making Sounds/active/active.ino
Executable file
31
projects/elegoo-kit-lessons/Lesson 6 Making Sounds/active/active.ino
Executable file
@ -0,0 +1,31 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.08
|
||||
|
||||
int buzzer = 12;//the pin of the active buzzer
|
||||
void setup()
|
||||
{
|
||||
pinMode(buzzer,OUTPUT);//initialize the buzzer pin as an output
|
||||
}
|
||||
void loop()
|
||||
{
|
||||
unsigned char i;
|
||||
while(1)
|
||||
{
|
||||
//output an frequency
|
||||
for(i=0;i<80;i++)
|
||||
{
|
||||
digitalWrite(buzzer,HIGH);
|
||||
delay(1);//wait for 1ms
|
||||
digitalWrite(buzzer,LOW);
|
||||
delay(1);//wait for 1ms
|
||||
}
|
||||
//output another frequency
|
||||
for(i=0;i<100;i++)
|
||||
{
|
||||
digitalWrite(buzzer,HIGH);
|
||||
delay(2);//wait for 2ms
|
||||
digitalWrite(buzzer,LOW);
|
||||
delay(2);//wait for 2ms
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,26 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.08
|
||||
|
||||
#include "pitches.h"
|
||||
|
||||
// notes in the melody:
|
||||
int melody[] = {
|
||||
NOTE_C5, NOTE_D5, NOTE_E5, NOTE_F5, NOTE_G5, NOTE_A5, NOTE_B5, NOTE_C6};
|
||||
int duration = 500; // 500 miliseconds
|
||||
|
||||
void setup() {
|
||||
|
||||
}
|
||||
|
||||
void loop() {
|
||||
for (int thisNote = 0; thisNote < 8; thisNote++) {
|
||||
// pin8 output the voice, every scale is 0.5 sencond
|
||||
tone(8, melody[thisNote], duration);
|
||||
|
||||
// Output the voice after several minutes
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
// restart after two seconds
|
||||
delay(2000);
|
||||
}
|
BIN
projects/elegoo-kit-lessons/Lesson 7 Passive Buzzer/pitches.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 7 Passive Buzzer/pitches.zip
Executable file
Binary file not shown.
26
projects/elegoo-kit-lessons/Lesson 8 Ball Switch/Ball_Switch/Ball_Switch.ino
Executable file
26
projects/elegoo-kit-lessons/Lesson 8 Ball Switch/Ball_Switch/Ball_Switch.ino
Executable file
@ -0,0 +1,26 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.08
|
||||
/*****************************************/
|
||||
const int ledPin = 13;//the led attach to
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(ledPin,OUTPUT);//initialize the ledPin as an output
|
||||
pinMode(2,INPUT);
|
||||
digitalWrite(2, HIGH);
|
||||
}
|
||||
/******************************************/
|
||||
void loop()
|
||||
{
|
||||
int digitalVal = digitalRead(2);
|
||||
if(HIGH == digitalVal)
|
||||
{
|
||||
digitalWrite(ledPin,LOW);//turn the led off
|
||||
}
|
||||
else
|
||||
{
|
||||
digitalWrite(ledPin,HIGH);//turn the led on
|
||||
}
|
||||
}
|
||||
/**********************************************/
|
||||
|
BIN
projects/elegoo-kit-lessons/Lesson 9 Servo/.DS_Store
vendored
Normal file
BIN
projects/elegoo-kit-lessons/Lesson 9 Servo/.DS_Store
vendored
Normal file
Binary file not shown.
25
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/README.adoc
Executable file
25
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/README.adoc
Executable file
@ -0,0 +1,25 @@
|
||||
= Servo Library for Arduino =
|
||||
|
||||
This library allows an Arduino board to control RC (hobby) servo motors.
|
||||
|
||||
For more information about this library please visit us at
|
||||
http://www.arduino.cc/en/Reference/Servo
|
||||
|
||||
== License ==
|
||||
|
||||
Copyright (c) 2013 Arduino LLC. All right reserved.
|
||||
Copyright (c) 2009 Michael Margolis. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
27
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Knob/Knob.ino
Executable file
27
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Knob/Knob.ino
Executable file
@ -0,0 +1,27 @@
|
||||
/*
|
||||
Controlling a servo position using a potentiometer (variable resistor)
|
||||
by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>
|
||||
|
||||
modified on 8 Nov 2013
|
||||
by Scott Fitzgerald
|
||||
http://www.arduino.cc/en/Tutorial/Knob
|
||||
*/
|
||||
|
||||
#include <Servo.h>
|
||||
|
||||
Servo myservo; // create servo object to control a servo
|
||||
|
||||
int potpin = 0; // analog pin used to connect the potentiometer
|
||||
int val; // variable to read the value from the analog pin
|
||||
|
||||
void setup() {
|
||||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
||||
}
|
||||
|
||||
void loop() {
|
||||
val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)
|
||||
val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180)
|
||||
myservo.write(val); // sets the servo position according to the scaled value
|
||||
delay(15); // waits for the servo to get there
|
||||
}
|
||||
|
32
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Sweep/Sweep.ino
Executable file
32
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Sweep/Sweep.ino
Executable file
@ -0,0 +1,32 @@
|
||||
/* Sweep
|
||||
by BARRAGAN <http://barraganstudio.com>
|
||||
This example code is in the public domain.
|
||||
|
||||
modified 8 Nov 2013
|
||||
by Scott Fitzgerald
|
||||
http://www.arduino.cc/en/Tutorial/Sweep
|
||||
*/
|
||||
|
||||
#include <Servo.h>
|
||||
|
||||
Servo myservo; // create servo object to control a servo
|
||||
// twelve servo objects can be created on most boards
|
||||
|
||||
int pos = 0; // variable to store the servo position
|
||||
|
||||
void setup() {
|
||||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
||||
}
|
||||
|
||||
void loop() {
|
||||
for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
|
||||
// in steps of 1 degree
|
||||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
||||
delay(15); // waits 15ms for the servo to reach the position
|
||||
}
|
||||
for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
|
||||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
||||
delay(15); // waits 15ms for the servo to reach the position
|
||||
}
|
||||
}
|
||||
|
24
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/keywords.txt
Executable file
24
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/keywords.txt
Executable file
@ -0,0 +1,24 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map Servo
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
Servo KEYWORD1 Servo
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
attach KEYWORD2
|
||||
detach KEYWORD2
|
||||
write KEYWORD2
|
||||
read KEYWORD2
|
||||
attached KEYWORD2
|
||||
writeMicroseconds KEYWORD2
|
||||
readMicroseconds KEYWORD2
|
||||
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
9
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/library.properties
Executable file
9
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/library.properties
Executable file
@ -0,0 +1,9 @@
|
||||
name=Servo
|
||||
version=1.1.2
|
||||
author=Michael Margolis, Arduino
|
||||
maintainer=Arduino <info@arduino.cc>
|
||||
sentence=Allows Arduino/Genuino boards to control a variety of servo motors.
|
||||
paragraph=This library can control a great number of servos.<br />It makes careful use of timers: the library can control 12 servos using only 1 timer.<br />On the Arduino Due you can control up to 60 servos.<br />
|
||||
category=Device Control
|
||||
url=http://www.arduino.cc/en/Reference/Servo
|
||||
architectures=avr,sam,samd
|
112
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/Servo.h
Executable file
112
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/Servo.h
Executable file
@ -0,0 +1,112 @@
|
||||
/*
|
||||
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
|
||||
Copyright (c) 2009 Michael Margolis. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
A servo is activated by creating an instance of the Servo class passing
|
||||
the desired pin to the attach() method.
|
||||
The servos are pulsed in the background using the value most recently
|
||||
written using the write() method.
|
||||
|
||||
Note that analogWrite of PWM on pins associated with the timer are
|
||||
disabled when the first servo is attached.
|
||||
Timers are seized as needed in groups of 12 servos - 24 servos use two
|
||||
timers, 48 servos will use four.
|
||||
The sequence used to sieze timers is defined in timers.h
|
||||
|
||||
The methods are:
|
||||
|
||||
Servo - Class for manipulating servo motors connected to Arduino pins.
|
||||
|
||||
attach(pin ) - Attaches a servo motor to an i/o pin.
|
||||
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
|
||||
default min is 544, max is 2400
|
||||
|
||||
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
|
||||
writeMicroseconds() - Sets the servo pulse width in microseconds
|
||||
read() - Gets the last written servo pulse width as an angle between 0 and 180.
|
||||
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
|
||||
attached() - Returns true if there is a servo attached.
|
||||
detach() - Stops an attached servos from pulsing its i/o pin.
|
||||
*/
|
||||
|
||||
#ifndef Servo_h
|
||||
#define Servo_h
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
/*
|
||||
* Defines for 16 bit timers used with Servo library
|
||||
*
|
||||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
|
||||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
|
||||
* _Nbr_16timers indicates how many 16 bit timers are available.
|
||||
*/
|
||||
|
||||
// Architecture specific include
|
||||
#if defined(ARDUINO_ARCH_AVR)
|
||||
#include "avr/ServoTimers.h"
|
||||
#elif defined(ARDUINO_ARCH_SAM)
|
||||
#include "sam/ServoTimers.h"
|
||||
#elif defined(ARDUINO_ARCH_SAMD)
|
||||
#include "samd/ServoTimers.h"
|
||||
#else
|
||||
#error "This library only supports boards with an AVR, SAM or SAMD processor."
|
||||
#endif
|
||||
|
||||
#define Servo_VERSION 2 // software version of this library
|
||||
|
||||
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
|
||||
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
|
||||
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
|
||||
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
|
||||
|
||||
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
|
||||
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
|
||||
|
||||
#define INVALID_SERVO 255 // flag indicating an invalid servo index
|
||||
|
||||
typedef struct {
|
||||
uint8_t nbr :6 ; // a pin number from 0 to 63
|
||||
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
|
||||
} ServoPin_t ;
|
||||
|
||||
typedef struct {
|
||||
ServoPin_t Pin;
|
||||
volatile unsigned int ticks;
|
||||
} servo_t;
|
||||
|
||||
class Servo
|
||||
{
|
||||
public:
|
||||
Servo();
|
||||
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
|
||||
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
|
||||
void detach();
|
||||
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
|
||||
void writeMicroseconds(int value); // Write pulse width in microseconds
|
||||
int read(); // returns current pulse width as an angle between 0 and 180 degrees
|
||||
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
|
||||
bool attached(); // return true if this servo is attached, otherwise false
|
||||
private:
|
||||
uint8_t servoIndex; // index into the channel data for this servo
|
||||
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
|
||||
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
|
||||
};
|
||||
|
||||
#endif
|
317
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/Servo.cpp
Executable file
317
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/Servo.cpp
Executable file
@ -0,0 +1,317 @@
|
||||
/*
|
||||
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
|
||||
Copyright (c) 2009 Michael Margolis. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#if defined(ARDUINO_ARCH_AVR)
|
||||
|
||||
#include <avr/interrupt.h>
|
||||
#include <Arduino.h>
|
||||
|
||||
#include "Servo.h"
|
||||
|
||||
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
|
||||
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
|
||||
|
||||
|
||||
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
|
||||
|
||||
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
|
||||
|
||||
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
||||
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
|
||||
|
||||
uint8_t ServoCount = 0; // the total number of attached servos
|
||||
|
||||
|
||||
// convenience macros
|
||||
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
||||
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
||||
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
||||
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
||||
|
||||
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
||||
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
||||
|
||||
/************ static functions common to all instances ***********************/
|
||||
|
||||
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
|
||||
{
|
||||
if( Channel[timer] < 0 )
|
||||
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
|
||||
else{
|
||||
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
|
||||
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
|
||||
}
|
||||
|
||||
Channel[timer]++; // increment to the next channel
|
||||
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
|
||||
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
|
||||
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
|
||||
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
|
||||
}
|
||||
else {
|
||||
// finished all channels so wait for the refresh period to expire before starting over
|
||||
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
|
||||
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
|
||||
else
|
||||
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
|
||||
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
|
||||
// Interrupt handlers for Arduino
|
||||
#if defined(_useTimer1)
|
||||
SIGNAL (TIMER1_COMPA_vect)
|
||||
{
|
||||
handle_interrupts(_timer1, &TCNT1, &OCR1A);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_useTimer3)
|
||||
SIGNAL (TIMER3_COMPA_vect)
|
||||
{
|
||||
handle_interrupts(_timer3, &TCNT3, &OCR3A);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_useTimer4)
|
||||
SIGNAL (TIMER4_COMPA_vect)
|
||||
{
|
||||
handle_interrupts(_timer4, &TCNT4, &OCR4A);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_useTimer5)
|
||||
SIGNAL (TIMER5_COMPA_vect)
|
||||
{
|
||||
handle_interrupts(_timer5, &TCNT5, &OCR5A);
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif defined WIRING
|
||||
// Interrupt handlers for Wiring
|
||||
#if defined(_useTimer1)
|
||||
void Timer1Service()
|
||||
{
|
||||
handle_interrupts(_timer1, &TCNT1, &OCR1A);
|
||||
}
|
||||
#endif
|
||||
#if defined(_useTimer3)
|
||||
void Timer3Service()
|
||||
{
|
||||
handle_interrupts(_timer3, &TCNT3, &OCR3A);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
static void initISR(timer16_Sequence_t timer)
|
||||
{
|
||||
#if defined (_useTimer1)
|
||||
if(timer == _timer1) {
|
||||
TCCR1A = 0; // normal counting mode
|
||||
TCCR1B = _BV(CS11); // set prescaler of 8
|
||||
TCNT1 = 0; // clear the timer count
|
||||
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
|
||||
TIFR |= _BV(OCF1A); // clear any pending interrupts;
|
||||
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
|
||||
#else
|
||||
// here if not ATmega8 or ATmega128
|
||||
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
|
||||
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
|
||||
#endif
|
||||
#if defined(WIRING)
|
||||
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined (_useTimer3)
|
||||
if(timer == _timer3) {
|
||||
TCCR3A = 0; // normal counting mode
|
||||
TCCR3B = _BV(CS31); // set prescaler of 8
|
||||
TCNT3 = 0; // clear the timer count
|
||||
#if defined(__AVR_ATmega128__)
|
||||
TIFR |= _BV(OCF3A); // clear any pending interrupts;
|
||||
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
|
||||
#else
|
||||
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
|
||||
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
|
||||
#endif
|
||||
#if defined(WIRING)
|
||||
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined (_useTimer4)
|
||||
if(timer == _timer4) {
|
||||
TCCR4A = 0; // normal counting mode
|
||||
TCCR4B = _BV(CS41); // set prescaler of 8
|
||||
TCNT4 = 0; // clear the timer count
|
||||
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
|
||||
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined (_useTimer5)
|
||||
if(timer == _timer5) {
|
||||
TCCR5A = 0; // normal counting mode
|
||||
TCCR5B = _BV(CS51); // set prescaler of 8
|
||||
TCNT5 = 0; // clear the timer count
|
||||
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
|
||||
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void finISR(timer16_Sequence_t timer)
|
||||
{
|
||||
//disable use of the given timer
|
||||
#if defined WIRING // Wiring
|
||||
if(timer == _timer1) {
|
||||
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
|
||||
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
|
||||
#else
|
||||
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
|
||||
#endif
|
||||
timerDetach(TIMER1OUTCOMPAREA_INT);
|
||||
}
|
||||
else if(timer == _timer3) {
|
||||
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
|
||||
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
|
||||
#else
|
||||
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
|
||||
#endif
|
||||
timerDetach(TIMER3OUTCOMPAREA_INT);
|
||||
}
|
||||
#else
|
||||
//For arduino - in future: call here to a currently undefined function to reset the timer
|
||||
#endif
|
||||
}
|
||||
|
||||
static boolean isTimerActive(timer16_Sequence_t timer)
|
||||
{
|
||||
// returns true if any servo is active on this timer
|
||||
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
|
||||
if(SERVO(timer,channel).Pin.isActive == true)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/****************** end of static functions ******************************/
|
||||
|
||||
Servo::Servo()
|
||||
{
|
||||
if( ServoCount < MAX_SERVOS) {
|
||||
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
||||
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
|
||||
}
|
||||
else
|
||||
this->servoIndex = INVALID_SERVO ; // too many servos
|
||||
}
|
||||
|
||||
uint8_t Servo::attach(int pin)
|
||||
{
|
||||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
|
||||
}
|
||||
|
||||
uint8_t Servo::attach(int pin, int min, int max)
|
||||
{
|
||||
if(this->servoIndex < MAX_SERVOS ) {
|
||||
pinMode( pin, OUTPUT) ; // set servo pin to output
|
||||
servos[this->servoIndex].Pin.nbr = pin;
|
||||
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
||||
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
||||
this->max = (MAX_PULSE_WIDTH - max)/4;
|
||||
// initialize the timer if it has not already been initialized
|
||||
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
||||
if(isTimerActive(timer) == false)
|
||||
initISR(timer);
|
||||
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
||||
}
|
||||
return this->servoIndex ;
|
||||
}
|
||||
|
||||
void Servo::detach()
|
||||
{
|
||||
servos[this->servoIndex].Pin.isActive = false;
|
||||
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
||||
if(isTimerActive(timer) == false) {
|
||||
finISR(timer);
|
||||
}
|
||||
}
|
||||
|
||||
void Servo::write(int value)
|
||||
{
|
||||
if(value < MIN_PULSE_WIDTH)
|
||||
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
||||
if(value < 0) value = 0;
|
||||
if(value > 180) value = 180;
|
||||
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
|
||||
}
|
||||
this->writeMicroseconds(value);
|
||||
}
|
||||
|
||||
void Servo::writeMicroseconds(int value)
|
||||
{
|
||||
// calculate and store the values for the given channel
|
||||
byte channel = this->servoIndex;
|
||||
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
||||
{
|
||||
if( value < SERVO_MIN() ) // ensure pulse width is valid
|
||||
value = SERVO_MIN();
|
||||
else if( value > SERVO_MAX() )
|
||||
value = SERVO_MAX();
|
||||
|
||||
value = value - TRIM_DURATION;
|
||||
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
|
||||
|
||||
uint8_t oldSREG = SREG;
|
||||
cli();
|
||||
servos[channel].ticks = value;
|
||||
SREG = oldSREG;
|
||||
}
|
||||
}
|
||||
|
||||
int Servo::read() // return the value as degrees
|
||||
{
|
||||
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
|
||||
}
|
||||
|
||||
int Servo::readMicroseconds()
|
||||
{
|
||||
unsigned int pulsewidth;
|
||||
if( this->servoIndex != INVALID_SERVO )
|
||||
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
|
||||
else
|
||||
pulsewidth = 0;
|
||||
|
||||
return pulsewidth;
|
||||
}
|
||||
|
||||
bool Servo::attached()
|
||||
{
|
||||
return servos[this->servoIndex].Pin.isActive ;
|
||||
}
|
||||
|
||||
#endif // ARDUINO_ARCH_AVR
|
||||
|
59
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/ServoTimers.h
Executable file
59
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/ServoTimers.h
Executable file
@ -0,0 +1,59 @@
|
||||
/*
|
||||
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
|
||||
Copyright (c) 2009 Michael Margolis. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
* Defines for 16 bit timers used with Servo library
|
||||
*
|
||||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
|
||||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
|
||||
* _Nbr_16timers indicates how many 16 bit timers are available.
|
||||
*/
|
||||
|
||||
/**
|
||||
* AVR Only definitions
|
||||
* --------------------
|
||||
*/
|
||||
|
||||
// Say which 16 bit timers can be used and in what order
|
||||
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define _useTimer5
|
||||
#define _useTimer1
|
||||
#define _useTimer3
|
||||
#define _useTimer4
|
||||
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t;
|
||||
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
#define _useTimer1
|
||||
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t;
|
||||
|
||||
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
#define _useTimer3
|
||||
#define _useTimer1
|
||||
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t;
|
||||
|
||||
#elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__)
|
||||
#define _useTimer3
|
||||
#define _useTimer1
|
||||
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t;
|
||||
|
||||
#else // everything else
|
||||
#define _useTimer1
|
||||
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t;
|
||||
#endif
|
||||
|
283
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/Servo.cpp
Executable file
283
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/Servo.cpp
Executable file
@ -0,0 +1,283 @@
|
||||
/*
|
||||
Copyright (c) 2013 Arduino LLC. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#if defined(ARDUINO_ARCH_SAM)
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <Servo.h>
|
||||
|
||||
#define usToTicks(_us) (( clockCyclesPerMicrosecond() * _us) / 32) // converts microseconds to tick
|
||||
#define ticksToUs(_ticks) (( (unsigned)_ticks * 32)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
|
||||
|
||||
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
|
||||
|
||||
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
||||
|
||||
uint8_t ServoCount = 0; // the total number of attached servos
|
||||
|
||||
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
|
||||
|
||||
// convenience macros
|
||||
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
||||
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
||||
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
||||
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
||||
|
||||
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
||||
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
||||
|
||||
/************ static functions common to all instances ***********************/
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
/// Interrupt handler for the TC0 channel 1.
|
||||
//------------------------------------------------------------------------------
|
||||
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel);
|
||||
#if defined (_useTimer1)
|
||||
void HANDLER_FOR_TIMER1(void) {
|
||||
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
|
||||
}
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
void HANDLER_FOR_TIMER2(void) {
|
||||
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
|
||||
}
|
||||
#endif
|
||||
#if defined (_useTimer3)
|
||||
void HANDLER_FOR_TIMER3(void) {
|
||||
Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
|
||||
}
|
||||
#endif
|
||||
#if defined (_useTimer4)
|
||||
void HANDLER_FOR_TIMER4(void) {
|
||||
Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
|
||||
}
|
||||
#endif
|
||||
#if defined (_useTimer5)
|
||||
void HANDLER_FOR_TIMER5(void) {
|
||||
Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
|
||||
}
|
||||
#endif
|
||||
|
||||
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel)
|
||||
{
|
||||
// clear interrupt
|
||||
tc->TC_CHANNEL[channel].TC_SR;
|
||||
if (Channel[timer] < 0) {
|
||||
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer
|
||||
} else {
|
||||
if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true) {
|
||||
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
|
||||
}
|
||||
}
|
||||
|
||||
Channel[timer]++; // increment to the next channel
|
||||
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
|
||||
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks;
|
||||
if(SERVO(timer,Channel[timer]).Pin.isActive == true) { // check if activated
|
||||
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
|
||||
}
|
||||
}
|
||||
else {
|
||||
// finished all channels so wait for the refresh period to expire before starting over
|
||||
if( (tc->TC_CHANNEL[channel].TC_CV) + 4 < usToTicks(REFRESH_INTERVAL) ) { // allow a few ticks to ensure the next OCR1A not missed
|
||||
tc->TC_CHANNEL[channel].TC_RA = (unsigned int)usToTicks(REFRESH_INTERVAL);
|
||||
}
|
||||
else {
|
||||
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed
|
||||
}
|
||||
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
||||
}
|
||||
}
|
||||
|
||||
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn)
|
||||
{
|
||||
pmc_enable_periph_clk(id);
|
||||
TC_Configure(tc, channel,
|
||||
TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32
|
||||
TC_CMR_WAVE | // Waveform mode
|
||||
TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC
|
||||
|
||||
/* 84MHz, MCK/32, for 1.5ms: 3937 */
|
||||
TC_SetRA(tc, channel, 2625); // 1ms
|
||||
|
||||
/* Configure and enable interrupt */
|
||||
NVIC_EnableIRQ(irqn);
|
||||
// TC_IER_CPAS: RA Compare
|
||||
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS;
|
||||
|
||||
// Enables the timer clock and performs a software reset to start the counting
|
||||
TC_Start(tc, channel);
|
||||
}
|
||||
|
||||
static void initISR(timer16_Sequence_t timer)
|
||||
{
|
||||
#if defined (_useTimer1)
|
||||
if (timer == _timer1)
|
||||
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
if (timer == _timer2)
|
||||
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
|
||||
#endif
|
||||
#if defined (_useTimer3)
|
||||
if (timer == _timer3)
|
||||
_initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
|
||||
#endif
|
||||
#if defined (_useTimer4)
|
||||
if (timer == _timer4)
|
||||
_initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
|
||||
#endif
|
||||
#if defined (_useTimer5)
|
||||
if (timer == _timer5)
|
||||
_initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void finISR(timer16_Sequence_t timer)
|
||||
{
|
||||
#if defined (_useTimer1)
|
||||
TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
|
||||
#endif
|
||||
#if defined (_useTimer3)
|
||||
TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
|
||||
#endif
|
||||
#if defined (_useTimer4)
|
||||
TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
|
||||
#endif
|
||||
#if defined (_useTimer5)
|
||||
TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static boolean isTimerActive(timer16_Sequence_t timer)
|
||||
{
|
||||
// returns true if any servo is active on this timer
|
||||
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
|
||||
if(SERVO(timer,channel).Pin.isActive == true)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/****************** end of static functions ******************************/
|
||||
|
||||
Servo::Servo()
|
||||
{
|
||||
if (ServoCount < MAX_SERVOS) {
|
||||
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
||||
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
|
||||
} else {
|
||||
this->servoIndex = INVALID_SERVO; // too many servos
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t Servo::attach(int pin)
|
||||
{
|
||||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
|
||||
}
|
||||
|
||||
uint8_t Servo::attach(int pin, int min, int max)
|
||||
{
|
||||
timer16_Sequence_t timer;
|
||||
|
||||
if (this->servoIndex < MAX_SERVOS) {
|
||||
pinMode(pin, OUTPUT); // set servo pin to output
|
||||
servos[this->servoIndex].Pin.nbr = pin;
|
||||
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
||||
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
||||
this->max = (MAX_PULSE_WIDTH - max)/4;
|
||||
// initialize the timer if it has not already been initialized
|
||||
timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
||||
if (isTimerActive(timer) == false) {
|
||||
initISR(timer);
|
||||
}
|
||||
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
||||
}
|
||||
return this->servoIndex;
|
||||
}
|
||||
|
||||
void Servo::detach()
|
||||
{
|
||||
timer16_Sequence_t timer;
|
||||
|
||||
servos[this->servoIndex].Pin.isActive = false;
|
||||
timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
||||
if(isTimerActive(timer) == false) {
|
||||
finISR(timer);
|
||||
}
|
||||
}
|
||||
|
||||
void Servo::write(int value)
|
||||
{
|
||||
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
||||
if (value < MIN_PULSE_WIDTH)
|
||||
{
|
||||
if (value < 0)
|
||||
value = 0;
|
||||
else if (value > 180)
|
||||
value = 180;
|
||||
|
||||
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
|
||||
}
|
||||
writeMicroseconds(value);
|
||||
}
|
||||
|
||||
void Servo::writeMicroseconds(int value)
|
||||
{
|
||||
// calculate and store the values for the given channel
|
||||
byte channel = this->servoIndex;
|
||||
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
||||
{
|
||||
if (value < SERVO_MIN()) // ensure pulse width is valid
|
||||
value = SERVO_MIN();
|
||||
else if (value > SERVO_MAX())
|
||||
value = SERVO_MAX();
|
||||
|
||||
value = value - TRIM_DURATION;
|
||||
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
|
||||
servos[channel].ticks = value;
|
||||
}
|
||||
}
|
||||
|
||||
int Servo::read() // return the value as degrees
|
||||
{
|
||||
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
|
||||
}
|
||||
|
||||
int Servo::readMicroseconds()
|
||||
{
|
||||
unsigned int pulsewidth;
|
||||
if (this->servoIndex != INVALID_SERVO)
|
||||
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
|
||||
else
|
||||
pulsewidth = 0;
|
||||
|
||||
return pulsewidth;
|
||||
}
|
||||
|
||||
bool Servo::attached()
|
||||
{
|
||||
return servos[this->servoIndex].Pin.isActive;
|
||||
}
|
||||
|
||||
#endif // ARDUINO_ARCH_SAM
|
||||
|
88
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/ServoTimers.h
Executable file
88
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/ServoTimers.h
Executable file
@ -0,0 +1,88 @@
|
||||
/*
|
||||
Copyright (c) 2013 Arduino LLC. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
* Defines for 16 bit timers used with Servo library
|
||||
*
|
||||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
|
||||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
|
||||
* _Nbr_16timers indicates how many 16 bit timers are available.
|
||||
*/
|
||||
|
||||
/**
|
||||
* SAM Only definitions
|
||||
* --------------------
|
||||
*/
|
||||
|
||||
// For SAM3X:
|
||||
#define _useTimer1
|
||||
#define _useTimer2
|
||||
#define _useTimer3
|
||||
#define _useTimer4
|
||||
#define _useTimer5
|
||||
|
||||
/*
|
||||
TC0, chan 0 => TC0_Handler
|
||||
TC0, chan 1 => TC1_Handler
|
||||
TC0, chan 2 => TC2_Handler
|
||||
TC1, chan 0 => TC3_Handler
|
||||
TC1, chan 1 => TC4_Handler
|
||||
TC1, chan 2 => TC5_Handler
|
||||
TC2, chan 0 => TC6_Handler
|
||||
TC2, chan 1 => TC7_Handler
|
||||
TC2, chan 2 => TC8_Handler
|
||||
*/
|
||||
|
||||
#if defined (_useTimer1)
|
||||
#define TC_FOR_TIMER1 TC1
|
||||
#define CHANNEL_FOR_TIMER1 0
|
||||
#define ID_TC_FOR_TIMER1 ID_TC3
|
||||
#define IRQn_FOR_TIMER1 TC3_IRQn
|
||||
#define HANDLER_FOR_TIMER1 TC3_Handler
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
#define TC_FOR_TIMER2 TC1
|
||||
#define CHANNEL_FOR_TIMER2 1
|
||||
#define ID_TC_FOR_TIMER2 ID_TC4
|
||||
#define IRQn_FOR_TIMER2 TC4_IRQn
|
||||
#define HANDLER_FOR_TIMER2 TC4_Handler
|
||||
#endif
|
||||
#if defined (_useTimer3)
|
||||
#define TC_FOR_TIMER3 TC1
|
||||
#define CHANNEL_FOR_TIMER3 2
|
||||
#define ID_TC_FOR_TIMER3 ID_TC5
|
||||
#define IRQn_FOR_TIMER3 TC5_IRQn
|
||||
#define HANDLER_FOR_TIMER3 TC5_Handler
|
||||
#endif
|
||||
#if defined (_useTimer4)
|
||||
#define TC_FOR_TIMER4 TC0
|
||||
#define CHANNEL_FOR_TIMER4 2
|
||||
#define ID_TC_FOR_TIMER4 ID_TC2
|
||||
#define IRQn_FOR_TIMER4 TC2_IRQn
|
||||
#define HANDLER_FOR_TIMER4 TC2_Handler
|
||||
#endif
|
||||
#if defined (_useTimer5)
|
||||
#define TC_FOR_TIMER5 TC0
|
||||
#define CHANNEL_FOR_TIMER5 0
|
||||
#define ID_TC_FOR_TIMER5 ID_TC0
|
||||
#define IRQn_FOR_TIMER5 TC0_IRQn
|
||||
#define HANDLER_FOR_TIMER5 TC0_Handler
|
||||
#endif
|
||||
|
||||
typedef enum { _timer1, _timer2, _timer3, _timer4, _timer5, _Nbr_16timers } timer16_Sequence_t ;
|
||||
|
297
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/Servo.cpp
Executable file
297
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/Servo.cpp
Executable file
@ -0,0 +1,297 @@
|
||||
/*
|
||||
Copyright (c) 2015 Arduino LLC. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#if defined(ARDUINO_ARCH_SAMD)
|
||||
|
||||
#include <Arduino.h>
|
||||
#include <Servo.h>
|
||||
|
||||
#define usToTicks(_us) ((clockCyclesPerMicrosecond() * _us) / 16) // converts microseconds to tick
|
||||
#define ticksToUs(_ticks) (((unsigned) _ticks * 16) / clockCyclesPerMicrosecond()) // converts from ticks back to microseconds
|
||||
|
||||
#define TRIM_DURATION 5 // compensation ticks to trim adjust for digitalWrite delays
|
||||
|
||||
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
||||
|
||||
uint8_t ServoCount = 0; // the total number of attached servos
|
||||
|
||||
static volatile int8_t currentServoIndex[_Nbr_16timers]; // index for the servo being pulsed for each timer (or -1 if refresh interval)
|
||||
|
||||
// convenience macros
|
||||
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
||||
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
||||
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
||||
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
||||
|
||||
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
||||
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
||||
|
||||
#define WAIT_TC16_REGS_SYNC(x) while(x->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
|
||||
/************ static functions common to all instances ***********************/
|
||||
|
||||
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel, uint8_t intFlag);
|
||||
#if defined (_useTimer1)
|
||||
void HANDLER_FOR_TIMER1(void) {
|
||||
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, INTFLAG_BIT_FOR_TIMER_1);
|
||||
}
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
void HANDLER_FOR_TIMER2(void) {
|
||||
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, INTFLAG_BIT_FOR_TIMER_2);
|
||||
}
|
||||
#endif
|
||||
|
||||
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel, uint8_t intFlag)
|
||||
{
|
||||
if (currentServoIndex[timer] < 0) {
|
||||
tc->COUNT16.COUNT.reg = (uint16_t) 0;
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
} else {
|
||||
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) {
|
||||
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, LOW); // pulse this channel low if activated
|
||||
}
|
||||
}
|
||||
|
||||
// Select the next servo controlled by this timer
|
||||
currentServoIndex[timer]++;
|
||||
|
||||
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && currentServoIndex[timer] < SERVOS_PER_TIMER) {
|
||||
if (SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) { // check if activated
|
||||
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
|
||||
}
|
||||
|
||||
// Get the counter value
|
||||
uint16_t tcCounterValue = tc->COUNT16.COUNT.reg;
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
|
||||
tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + SERVO(timer, currentServoIndex[timer]).ticks);
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
}
|
||||
else {
|
||||
// finished all channels so wait for the refresh period to expire before starting over
|
||||
|
||||
// Get the counter value
|
||||
uint16_t tcCounterValue = tc->COUNT16.COUNT.reg;
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
|
||||
if (tcCounterValue + 4UL < usToTicks(REFRESH_INTERVAL)) { // allow a few ticks to ensure the next OCR1A not missed
|
||||
tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(REFRESH_INTERVAL);
|
||||
}
|
||||
else {
|
||||
tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + 4UL); // at least REFRESH_INTERVAL has elapsed
|
||||
}
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
|
||||
currentServoIndex[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
||||
}
|
||||
|
||||
// Clear the interrupt
|
||||
tc->COUNT16.INTFLAG.reg = intFlag;
|
||||
}
|
||||
|
||||
static inline void resetTC (Tc* TCx)
|
||||
{
|
||||
// Disable TCx
|
||||
TCx->COUNT16.CTRLA.reg &= ~TC_CTRLA_ENABLE;
|
||||
WAIT_TC16_REGS_SYNC(TCx)
|
||||
|
||||
// Reset TCx
|
||||
TCx->COUNT16.CTRLA.reg = TC_CTRLA_SWRST;
|
||||
WAIT_TC16_REGS_SYNC(TCx)
|
||||
while (TCx->COUNT16.CTRLA.bit.SWRST);
|
||||
}
|
||||
|
||||
static void _initISR(Tc *tc, uint8_t channel, uint32_t id, IRQn_Type irqn, uint8_t gcmForTimer, uint8_t intEnableBit)
|
||||
{
|
||||
// Enable GCLK for timer 1 (timer counter input clock)
|
||||
GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(gcmForTimer));
|
||||
while (GCLK->STATUS.bit.SYNCBUSY);
|
||||
|
||||
// Reset the timer
|
||||
// TODO this is not the right thing to do if more than one channel per timer is used by the Servo library
|
||||
resetTC(tc);
|
||||
|
||||
// Set timer counter mode to 16 bits
|
||||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16;
|
||||
|
||||
// Set timer counter mode as normal PWM
|
||||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_NPWM;
|
||||
|
||||
// Set the prescaler factor to GCLK_TC/16. At nominal 48MHz GCLK_TC this is 3000 ticks per millisecond
|
||||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV16;
|
||||
|
||||
// Count up
|
||||
tc->COUNT16.CTRLBCLR.bit.DIR = 1;
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
|
||||
// First interrupt request after 1 ms
|
||||
tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(1000UL);
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
|
||||
// Configure interrupt request
|
||||
// TODO this should be changed if more than one channel per timer is used by the Servo library
|
||||
NVIC_DisableIRQ(irqn);
|
||||
NVIC_ClearPendingIRQ(irqn);
|
||||
NVIC_SetPriority(irqn, 0);
|
||||
NVIC_EnableIRQ(irqn);
|
||||
|
||||
// Enable the match channel interrupt request
|
||||
tc->COUNT16.INTENSET.reg = intEnableBit;
|
||||
|
||||
// Enable the timer and start it
|
||||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE;
|
||||
WAIT_TC16_REGS_SYNC(tc)
|
||||
}
|
||||
|
||||
static void initISR(timer16_Sequence_t timer)
|
||||
{
|
||||
#if defined (_useTimer1)
|
||||
if (timer == _timer1)
|
||||
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1, GCM_FOR_TIMER_1, INTENSET_BIT_FOR_TIMER_1);
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
if (timer == _timer2)
|
||||
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2, GCM_FOR_TIMER_2, INTENSET_BIT_FOR_TIMER_2);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void finISR(timer16_Sequence_t timer)
|
||||
{
|
||||
#if defined (_useTimer1)
|
||||
// Disable the match channel interrupt request
|
||||
TC_FOR_TIMER1->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_1;
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
// Disable the match channel interrupt request
|
||||
TC_FOR_TIMER2->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_2;
|
||||
#endif
|
||||
}
|
||||
|
||||
static boolean isTimerActive(timer16_Sequence_t timer)
|
||||
{
|
||||
// returns true if any servo is active on this timer
|
||||
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
|
||||
if(SERVO(timer,channel).Pin.isActive == true)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/****************** end of static functions ******************************/
|
||||
|
||||
Servo::Servo()
|
||||
{
|
||||
if (ServoCount < MAX_SERVOS) {
|
||||
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
||||
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
|
||||
} else {
|
||||
this->servoIndex = INVALID_SERVO; // too many servos
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t Servo::attach(int pin)
|
||||
{
|
||||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
|
||||
}
|
||||
|
||||
uint8_t Servo::attach(int pin, int min, int max)
|
||||
{
|
||||
timer16_Sequence_t timer;
|
||||
|
||||
if (this->servoIndex < MAX_SERVOS) {
|
||||
pinMode(pin, OUTPUT); // set servo pin to output
|
||||
servos[this->servoIndex].Pin.nbr = pin;
|
||||
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
||||
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
||||
this->max = (MAX_PULSE_WIDTH - max)/4;
|
||||
// initialize the timer if it has not already been initialized
|
||||
timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
||||
if (isTimerActive(timer) == false) {
|
||||
initISR(timer);
|
||||
}
|
||||
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
||||
}
|
||||
return this->servoIndex;
|
||||
}
|
||||
|
||||
void Servo::detach()
|
||||
{
|
||||
timer16_Sequence_t timer;
|
||||
|
||||
servos[this->servoIndex].Pin.isActive = false;
|
||||
timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
||||
if(isTimerActive(timer) == false) {
|
||||
finISR(timer);
|
||||
}
|
||||
}
|
||||
|
||||
void Servo::write(int value)
|
||||
{
|
||||
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
||||
if (value < MIN_PULSE_WIDTH)
|
||||
{
|
||||
if (value < 0)
|
||||
value = 0;
|
||||
else if (value > 180)
|
||||
value = 180;
|
||||
|
||||
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
|
||||
}
|
||||
writeMicroseconds(value);
|
||||
}
|
||||
|
||||
void Servo::writeMicroseconds(int value)
|
||||
{
|
||||
// calculate and store the values for the given channel
|
||||
byte channel = this->servoIndex;
|
||||
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
||||
{
|
||||
if (value < SERVO_MIN()) // ensure pulse width is valid
|
||||
value = SERVO_MIN();
|
||||
else if (value > SERVO_MAX())
|
||||
value = SERVO_MAX();
|
||||
|
||||
value = value - TRIM_DURATION;
|
||||
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
|
||||
servos[channel].ticks = value;
|
||||
}
|
||||
}
|
||||
|
||||
int Servo::read() // return the value as degrees
|
||||
{
|
||||
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
|
||||
}
|
||||
|
||||
int Servo::readMicroseconds()
|
||||
{
|
||||
unsigned int pulsewidth;
|
||||
if (this->servoIndex != INVALID_SERVO)
|
||||
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
|
||||
else
|
||||
pulsewidth = 0;
|
||||
|
||||
return pulsewidth;
|
||||
}
|
||||
|
||||
bool Servo::attached()
|
||||
{
|
||||
return servos[this->servoIndex].Pin.isActive;
|
||||
}
|
||||
|
||||
#endif // ARDUINO_ARCH_SAMD
|
71
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/ServoTimers.h
Executable file
71
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/ServoTimers.h
Executable file
@ -0,0 +1,71 @@
|
||||
/*
|
||||
Copyright (c) 2015 Arduino LLC. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
/*
|
||||
* Defines for 16 bit timers used with Servo library
|
||||
*
|
||||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
|
||||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
|
||||
* _Nbr_16timers indicates how many 16 bit timers are available.
|
||||
*/
|
||||
|
||||
#ifndef __SERVO_TIMERS_H__
|
||||
#define __SERVO_TIMERS_H__
|
||||
|
||||
/**
|
||||
* SAMD Only definitions
|
||||
* ---------------------
|
||||
*/
|
||||
|
||||
// For SAMD:
|
||||
#define _useTimer1
|
||||
//#define _useTimer2 // <- TODO do not activate until the code in Servo.cpp has been changed in order
|
||||
// to manage more than one channel per timer on the SAMD architecture
|
||||
|
||||
#if defined (_useTimer1)
|
||||
#define TC_FOR_TIMER1 TC4
|
||||
#define CHANNEL_FOR_TIMER1 0
|
||||
#define INTENSET_BIT_FOR_TIMER_1 TC_INTENSET_MC0
|
||||
#define INTENCLR_BIT_FOR_TIMER_1 TC_INTENCLR_MC0
|
||||
#define INTFLAG_BIT_FOR_TIMER_1 TC_INTFLAG_MC0
|
||||
#define ID_TC_FOR_TIMER1 ID_TC4
|
||||
#define IRQn_FOR_TIMER1 TC4_IRQn
|
||||
#define HANDLER_FOR_TIMER1 TC4_Handler
|
||||
#define GCM_FOR_TIMER_1 GCM_TC4_TC5
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
#define TC_FOR_TIMER2 TC4
|
||||
#define CHANNEL_FOR_TIMER2 1
|
||||
#define INTENSET_BIT_FOR_TIMER_2 TC_INTENSET_MC1
|
||||
#define INTENCLR_BIT_FOR_TIMER_2 TC_INTENCLR_MC1
|
||||
#define ID_TC_FOR_TIMER2 ID_TC4
|
||||
#define IRQn_FOR_TIMER2 TC4_IRQn
|
||||
#define HANDLER_FOR_TIMER2 TC4_Handler
|
||||
#define GCM_FOR_TIMER_2 GCM_TC4_TC5
|
||||
#endif
|
||||
|
||||
typedef enum {
|
||||
#if defined (_useTimer1)
|
||||
_timer1,
|
||||
#endif
|
||||
#if defined (_useTimer2)
|
||||
_timer2,
|
||||
#endif
|
||||
_Nbr_16timers } timer16_Sequence_t;
|
||||
|
||||
#endif // __SERVO_TIMERS_H__
|
BIN
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo.zip
Executable file
BIN
projects/elegoo-kit-lessons/Lesson 9 Servo/Servo.zip
Executable file
Binary file not shown.
27
projects/elegoo-kit-lessons/Lesson 9 Servo/servo/servo.ino
Normal file
27
projects/elegoo-kit-lessons/Lesson 9 Servo/servo/servo.ino
Normal file
@ -0,0 +1,27 @@
|
||||
//www.elegoo.com
|
||||
//2016.12.08
|
||||
#include </Users/Imogen/Documents/Arduino/libraries/Servo/Servo.h>
|
||||
#include </Users/Imogen/Documents/Arduino/libraries/Servo/Servo.cpp>
|
||||
|
||||
Servo myservo; // create servo object to control a servo
|
||||
// twelve servo objects can be created on most boards
|
||||
|
||||
int pos = 0; // variable to store the servo position
|
||||
|
||||
void setup() {
|
||||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
||||
}
|
||||
|
||||
void loop() {
|
||||
for (pos = 0; pos <= 90; pos += 1) { // goes from 0 degrees to 180 degrees
|
||||
// in steps of 1 degree
|
||||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
||||
delay(50); // waits 15ms for the servo to reach the position
|
||||
}
|
||||
delay(1000);
|
||||
for (pos = 90; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
|
||||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
||||
delay(50); // waits 15ms for the servo to reach the position
|
||||
}
|
||||
}
|
||||
|
14
projects/elegoo-kit-lessons/README.txt
Executable file
14
projects/elegoo-kit-lessons/README.txt
Executable file
@ -0,0 +1,14 @@
|
||||
Dear Customer,
|
||||
|
||||
Thanks a lot for your support and purchasing Elegoo products.
|
||||
|
||||
We keep updating our tutorialso the tutorial in the CD may not be the latest version.
|
||||
|
||||
If you need the latest tutorial, you may download the tutorial from www.elegoo.com
|
||||
|
||||
We apologize for the inconvenience caused and should you have additional questions or problems during testing,
|
||||
please feel free to contact us at service@elegoo.com or euservice@elegoo.com.
|
||||
|
||||
Thanks and best regards
|
||||
|
||||
Elegoo Support Team
|
BIN
projects/elegoo-kit-lessons/UNO R3 DRIVER FAQ.pdf
Executable file
BIN
projects/elegoo-kit-lessons/UNO R3 DRIVER FAQ.pdf
Executable file
Binary file not shown.
83
projects/i2c_scanner/i2c_scanner.ino
Normal file
83
projects/i2c_scanner/i2c_scanner.ino
Normal file
@ -0,0 +1,83 @@
|
||||
// --------------------------------------
|
||||
// i2c_scanner
|
||||
//
|
||||
// Version 1
|
||||
// This program (or code that looks like it)
|
||||
// can be found in many places.
|
||||
// For example on the Arduino.cc forum.
|
||||
// The original author is not know.
|
||||
// Version 2, Juni 2012, Using Arduino 1.0.1
|
||||
// Adapted to be as simple as possible by Arduino.cc user Krodal
|
||||
// Version 3, Feb 26 2013
|
||||
// V3 by louarnold
|
||||
// Version 4, March 3, 2013, Using Arduino 1.0.3
|
||||
// by Arduino.cc user Krodal.
|
||||
// Changes by louarnold removed.
|
||||
// Scanning addresses changed from 0...127 to 1...119,
|
||||
// according to the i2c scanner by Nick Gammon
|
||||
// http://www.gammon.com.au/forum/?id=10896
|
||||
// Version 5, March 28, 2013
|
||||
// As version 4, but address scans now to 127.
|
||||
// A sensor seems to use address 120.
|
||||
// Version 6, November 27, 2015.
|
||||
// Added waiting for the Leonardo serial communication.
|
||||
//
|
||||
//
|
||||
// This sketch tests the standard 7-bit addresses
|
||||
// Devices with higher bit address might not be seen properly.
|
||||
//
|
||||
|
||||
#include <Wire.h>
|
||||
|
||||
|
||||
void setup()
|
||||
{
|
||||
Wire.begin();
|
||||
|
||||
Serial.begin(9600);
|
||||
while (!Serial); // Leonardo: wait for serial monitor
|
||||
Serial.println("\nI2C Scanner");
|
||||
}
|
||||
|
||||
|
||||
void loop()
|
||||
{
|
||||
byte error, address;
|
||||
int nDevices;
|
||||
|
||||
Serial.println("Scanning...");
|
||||
|
||||
nDevices = 0;
|
||||
for(address = 1; address < 127; address++ )
|
||||
{
|
||||
// The i2c_scanner uses the return value of
|
||||
// the Write.endTransmisstion to see if
|
||||
// a device did acknowledge to the address.
|
||||
Wire.beginTransmission(address);
|
||||
error = Wire.endTransmission();
|
||||
|
||||
if (error == 0)
|
||||
{
|
||||
Serial.print("I2C device found at address 0x");
|
||||
if (address<16)
|
||||
Serial.print("0");
|
||||
Serial.print(address,HEX);
|
||||
Serial.println(" !");
|
||||
|
||||
nDevices++;
|
||||
}
|
||||
else if (error==4)
|
||||
{
|
||||
Serial.print("Unknown error at address 0x");
|
||||
if (address<16)
|
||||
Serial.print("0");
|
||||
Serial.println(address,HEX);
|
||||
}
|
||||
}
|
||||
if (nDevices == 0)
|
||||
Serial.println("No I2C devices found\n");
|
||||
else
|
||||
Serial.println("done\n");
|
||||
|
||||
delay(5000); // wait 5 seconds for next scan
|
||||
}
|
43
projects/randomart_tester/randomart_tester.ino
Normal file
43
projects/randomart_tester/randomart_tester.ino
Normal file
@ -0,0 +1,43 @@
|
||||
int rPin = 11;
|
||||
int gPin = 10;
|
||||
int bPin = 9;
|
||||
|
||||
int tstPin = 3;
|
||||
|
||||
void setup() {
|
||||
// put your setup code here, to run once:
|
||||
pinMode(rPin, OUTPUT); // R
|
||||
pinMode(gPin, OUTPUT); // G
|
||||
pinMode(bPin, OUTPUT); // B
|
||||
pinMode(5, OUTPUT); // transistor
|
||||
pinMode(4, OUTPUT); // transistor
|
||||
|
||||
pinMode(tstPin, OUTPUT); // test
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// put your main code here, to run repeatedly:
|
||||
if(rand()%2){
|
||||
digitalWrite(tstPin,HIGH);
|
||||
}
|
||||
else{
|
||||
digitalWrite(tstPin,LOW);
|
||||
}
|
||||
digitalWrite(rPin,0.6*15);
|
||||
digitalWrite(gPin,0.3*15*0);
|
||||
digitalWrite(bPin,0.1*15*0);
|
||||
if(rand()%2){
|
||||
digitalWrite(4,HIGH);
|
||||
}
|
||||
else{
|
||||
digitalWrite(4,LOW);
|
||||
}
|
||||
if(rand()%2){
|
||||
digitalWrite(5,HIGH);
|
||||
}
|
||||
else{
|
||||
digitalWrite(5,LOW);
|
||||
}
|
||||
// digitalWrite(5,LOW);
|
||||
delay(1000);
|
||||
}
|
Loading…
Reference in New Issue
Block a user