mm
3 years ago
commit
30b84d0340
78 changed files with 7007 additions and 0 deletions
@ -0,0 +1,56 @@ |
|||
/* SevSeg Counter Example
|
|||
|
|||
Copyright 2017 Dean Reading |
|||
|
|||
Licensed under the Apache License, Version 2.0 (the "License"); |
|||
you may not use this file except in compliance with the License. |
|||
You may obtain a copy of the License at |
|||
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|||
Unless required by applicable law or agreed to in writing, software |
|||
distributed under the License is distributed on an "AS IS" BASIS, |
|||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
See the License for the specific language governing permissions and |
|||
limitations under the License. |
|||
|
|||
|
|||
This example demonstrates a very simple use of the SevSeg library with a 4 |
|||
digit display. It displays a counter that counts up, showing deci-seconds. |
|||
*/ |
|||
|
|||
#include "SevSeg.h" |
|||
SevSeg sevseg; //Instantiate a seven segment controller object
|
|||
|
|||
void setup() { |
|||
byte numDigits = 4; |
|||
byte digitPins[] = {2, 3, 4, 5}; |
|||
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12, 13}; |
|||
bool resistorsOnSegments = false; // 'false' means resistors are on digit pins
|
|||
byte hardwareConfig = COMMON_CATHODE; // See README.md for options
|
|||
bool updateWithDelays = false; // Default. Recommended
|
|||
bool leadingZeros = false; // Use 'true' if you'd like to keep the leading zeros
|
|||
|
|||
sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments, updateWithDelays, leadingZeros); |
|||
sevseg.setBrightness(10); |
|||
pinMode(A5, INPUT_PULLUP); |
|||
pinMode(A1, INPUT_PULLUP); |
|||
// Serial.begin(9600); // debugging
|
|||
} |
|||
float lastReset = 0.0; |
|||
void loop() { |
|||
unsigned long runMillis= millis(); |
|||
float actualDays = runMillis/86400000.0; |
|||
float days = actualDays - lastReset; |
|||
sevseg.setNumber(days, 3); |
|||
sevseg.refreshDisplay(); // Must run repeatedly
|
|||
// Serial.println(actualDays,5); // debugging
|
|||
// Serial.println(digitalRead(A1)); // debugging
|
|||
if(!digitalRead(A5)){ |
|||
lastReset = actualDays; |
|||
} |
|||
if(!digitalRead(A1)){ |
|||
lastReset = actualDays; |
|||
} |
|||
} |
|||
|
|||
/// END ///
|
@ -0,0 +1,62 @@ |
|||
/* SevSeg Counter Example
|
|||
|
|||
Copyright 2017 Dean Reading |
|||
|
|||
Licensed under the Apache License, Version 2.0 (the "License"); |
|||
you may not use this file except in compliance with the License. |
|||
You may obtain a copy of the License at |
|||
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|||
Unless required by applicable law or agreed to in writing, software |
|||
distributed under the License is distributed on an "AS IS" BASIS, |
|||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
See the License for the specific language governing permissions and |
|||
limitations under the License. |
|||
|
|||
|
|||
This example demonstrates a very simple use of the SevSeg library with a 4 |
|||
digit display. It displays a counter that counts up, showing deci-seconds. |
|||
*/ |
|||
|
|||
#include "SevSeg.h" |
|||
SevSeg sevseg; //Instantiate a seven segment controller object
|
|||
|
|||
void setup() { |
|||
byte numDigits = 4; |
|||
byte digitPins[] = {2, 3, 4, 5}; |
|||
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12, 13}; |
|||
bool resistorsOnSegments = false; // 'false' means resistors are on digit pins
|
|||
byte hardwareConfig = COMMON_CATHODE; // See README.md for options
|
|||
bool updateWithDelays = false; // Default. Recommended
|
|||
bool leadingZeros = false; // Use 'true' if you'd like to keep the leading zeros
|
|||
|
|||
sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments, updateWithDelays, leadingZeros); |
|||
sevseg.setBrightness(10); |
|||
pinMode(A5, INPUT_PULLUP); |
|||
pinMode(A1, INPUT_PULLUP); |
|||
// Serial.begin(9600); // debugging
|
|||
} |
|||
|
|||
int decPlaces = 3; |
|||
float lastReset = 0; // optional button reset - orange wire connected to A1, or programmable button on A5
|
|||
|
|||
void loop() { |
|||
unsigned long runMillis= millis(); |
|||
float actualDays = runMillis/86400000.0; |
|||
float days = actualDays - lastReset; |
|||
sevseg.setNumber(days, decPlaces); |
|||
sevseg.refreshDisplay(); // Must run repeatedly
|
|||
// Serial.println(actualDays,5); // debugging
|
|||
// Serial.println(digitalRead(A1)); // debugging
|
|||
if(!digitalRead(A1)){lastReset -= 0.001;} |
|||
// if(!digitalRead(A5)){lastReset = actualDays;}
|
|||
// program A5 as decimal place changer
|
|||
if(!digitalRead(A5)){ |
|||
// if(decPlaces == 2){decPlaces = 3;}
|
|||
// if(decPlaces == 3){decPlaces = 2;}
|
|||
decPlaces = (decPlaces + 1)%2 + 2; |
|||
delay(250); |
|||
} |
|||
} |
|||
|
|||
/// END ///
|
@ -0,0 +1,162 @@ |
|||
//YWROBOT
|
|||
//Compatible with the Arduino IDE 1.0
|
|||
//Library version:1.1
|
|||
#include <Wire.h> |
|||
#include <LiquidCrystal_I2C.h> |
|||
#include <TM1638.h> |
|||
LiquidCrystal_I2C lcd(0x27,20,4); // set the LCD address to 0x27 for a 16 chars and 2 line display
|
|||
|
|||
TM1638 module(3, 2, 4); |
|||
#define NO_MODULES 1 |
|||
TM1638* modules[NO_MODULES] = { |
|||
&module |
|||
}; |
|||
byte modes[NO_MODULES]; |
|||
unsigned long trump_reset; |
|||
unsigned long startTime; |
|||
unsigned long study_reset; |
|||
|
|||
const int buttondelay = 150; // millis delay for button bounceback
|
|||
const int backlight_pin = 7; |
|||
const int rPin = 10; // RGB pins
|
|||
const int gPin = 9; |
|||
const int bPin = 8; |
|||
int rval = 0; |
|||
int gval = 0; |
|||
int bval = 0; |
|||
bool backlight_status = 1; |
|||
int daysSinceLastReset = 0; |
|||
int studySessions = 0; |
|||
|
|||
|
|||
void update(TM1638* module, byte* mode) { |
|||
byte buttons = module->getButtons(); |
|||
unsigned long runningSecs = (millis() - startTime) / 1000; |
|||
float studyMins = (millis() - study_reset) / (1000.0*60); |
|||
float trumpDays = (millis() - trump_reset) / (1000.0*60*60*24); |
|||
|
|||
if(module->getButtons() == 128 ){ |
|||
backlight_status = !backlight_status; |
|||
digitalWrite(backlight_pin, backlight_status); |
|||
delay(buttondelay); |
|||
// module->clearDisplay();
|
|||
} |
|||
|
|||
// button pressed - change mode
|
|||
if (buttons != 0) { |
|||
*mode = buttons; |
|||
} |
|||
|
|||
// STUDY TIMER ON LCD
|
|||
lcd.setCursor(6,3); |
|||
lcd.print(int(studyMins)); |
|||
lcd.setCursor(3,3); |
|||
lcd.print(studySessions); |
|||
lcd.setCursor(0,3); |
|||
lcd.print(daysSinceLastReset); |
|||
|
|||
module->setLEDs(*mode); |
|||
switch (*mode) { |
|||
|
|||
case 1 << 0: // STUDY TIMER SUMMARY
|
|||
char s[8]; |
|||
studySessions = int(studyMins/90); |
|||
daysSinceLastReset = studySessions%16; |
|||
sprintf(s, "%2d.%2d.%2d", daysSinceLastReset, studySessions, int(studyMins)%90 ); |
|||
module->setDisplayToString(s); |
|||
break; |
|||
|
|||
case 1 << 1: |
|||
module->setDisplayToDecNumber(10000*studyMins, 1 << 4, false); |
|||
break; |
|||
|
|||
case 1 << 2: |
|||
module->setDisplayToDecNumber(1000000*trumpDays, 1 << 6, false); |
|||
break; |
|||
|
|||
case 1 << 3: |
|||
module->setDisplayToDecNumber(runningSecs, 1 << 5, false); |
|||
break; |
|||
|
|||
case 1 << 4: // Button 5
|
|||
module->clearDisplay(); |
|||
module->clearDisplayDigit((runningSecs - 1) % 8, 0); |
|||
module->setDisplayDigit(runningSecs % 8, runningSecs % 8, 0); |
|||
break; |
|||
|
|||
case 1 << 5: // reset study timer
|
|||
study_reset = millis(); |
|||
*mode = 1 << 1; |
|||
delay(buttondelay); |
|||
module->clearDisplay(); |
|||
break; |
|||
|
|||
case 1 << 6: // reset trump timer
|
|||
trump_reset = millis(); |
|||
*mode = 1 << 2; |
|||
delay(buttondelay); |
|||
module->clearDisplay(); |
|||
break; |
|||
|
|||
case 1 << 7: // Button 8, reset backlight
|
|||
module->clearDisplay(); |
|||
break; |
|||
|
|||
case 65: |
|||
module->setDisplayToError(); |
|||
break; |
|||
|
|||
} |
|||
} |
|||
|
|||
|
|||
void setup() |
|||
{ |
|||
for (int i = 0; i < NO_MODULES; i++) { |
|||
modules[i]->setupDisplay(true, 7); |
|||
modes[i] = 0; |
|||
} |
|||
|
|||
startTime = millis(); |
|||
study_reset = millis(); |
|||
trump_reset = millis(); |
|||
|
|||
lcd.init(); // initialize the lcd
|
|||
pinMode(backlight_pin, OUTPUT); |
|||
digitalWrite(backlight_pin, backlight_status); |
|||
// Print a message to the LCD.
|
|||
|
|||
lcd.backlight(); |
|||
lcd.setCursor(2,0); |
|||
lcd.print("ACTION EXPRESSES"); |
|||
lcd.setCursor(6,1); |
|||
lcd.print("PRIORITY."); |
|||
lcd.setCursor(15,2); |
|||
lcd.print("ABK"); |
|||
} |
|||
|
|||
|
|||
void loop() |
|||
{ |
|||
|
|||
for (int i = 0; i < NO_MODULES; i++) { |
|||
update(modules[i], &modes[i]); |
|||
} |
|||
// RGB LED
|
|||
rval = max( rval + rand()%3 - 1, 0); // markov chain
|
|||
gval = max( gval + rand()%3 - 1, 0); |
|||
bval = max( bval + rand()%3 - 1, 0); |
|||
rval = min(rval, 255); |
|||
gval = min(gval, 255); |
|||
bval = min(bval, 255); |
|||
|
|||
lcd.setCursor(10,2); |
|||
lcd.print(rval); |
|||
digitalWrite(rPin, 0.6*rval); |
|||
lcd.setCursor(5,2); |
|||
lcd.print(gval); |
|||
digitalWrite(gPin, 0.3*gval); |
|||
lcd.setCursor(0,2); |
|||
digitalWrite(bPin, 0.1*bval); |
|||
lcd.print(bval); |
|||
} |
@ -0,0 +1,347 @@ |
|||
/*
|
|||
This Arduino code for "4-digit-7-segment-led-display" (KYX-5461AS). |
|||
* This code can display one Number in all 4 digit! |
|||
* This code can display 4 Numbers each on in specific digit |
|||
* This code can also make a Number Countdown (Timers). |
|||
|
|||
author : Oussama Amri (@amriunix) |
|||
website : ithepro.com |
|||
*/ |
|||
|
|||
//display pins
|
|||
int segA = 5; // >> 11
|
|||
int segB = 13; // >> 7
|
|||
int segC = 10; // >> 4
|
|||
int segD = 8; // >> 2
|
|||
int segE = 7; // >> 1
|
|||
int segF = 4; // >> 10
|
|||
int segG = 11; // >> 5
|
|||
int segPt = 9; // >> 3
|
|||
//------------//
|
|||
|
|||
//display digit
|
|||
int d1 = 6; // >> 12
|
|||
int d2 = 3; // >> 9
|
|||
int d3 = 2; // >> 8
|
|||
int d4 = 12; // >> 6
|
|||
//------------//
|
|||
|
|||
int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>
|
|||
int mydelay = 3000; // 50 is about one second, 3000 a minute
|
|||
int i=0; |
|||
|
|||
//=============================================//
|
|||
//init all pin used
|
|||
void setup() { |
|||
pinMode(2, OUTPUT); |
|||
pinMode(3, OUTPUT); |
|||
pinMode(4, OUTPUT); |
|||
pinMode(5, OUTPUT); |
|||
pinMode(6, OUTPUT); |
|||
pinMode(7, OUTPUT); |
|||
pinMode(8, OUTPUT); |
|||
pinMode(9, OUTPUT); |
|||
pinMode(10, OUTPUT); |
|||
pinMode(11, OUTPUT); |
|||
pinMode(12, OUTPUT); |
|||
pinMode(13, OUTPUT); |
|||
} |
|||
|
|||
|
|||
|
|||
//=============================================//
|
|||
void loop() { |
|||
downup(0,20,9,0); // numbers above 19 display as blank.
|
|||
//all(8);
|
|||
//writeN(1,9,0,4);
|
|||
} |
|||
|
|||
|
|||
|
|||
//=============================================//
|
|||
//Write a Number - writeN(1,9,9,0) -> 1990
|
|||
void writeN(int a,int b,int c,int d){ |
|||
selectDwriteL(1,a); |
|||
selectDwriteL(2,b); |
|||
selectDwriteL(3,c); |
|||
selectDwriteL(4,d); |
|||
} |
|||
|
|||
//=============================================//
|
|||
//Make a Number Number Countdown (Timers).
|
|||
void downup(int a,int b,int c,int d){ |
|||
while (a != -1) { |
|||
while(b != -1){ |
|||
while(c != -1){ |
|||
while (d != -1) { |
|||
while (i<mydelay) { // i here is like a timer ! because we can't use delay function
|
|||
selectDwriteL(1,a); |
|||
selectDwriteL(2,b); |
|||
selectDwriteL(3,c); |
|||
selectDwriteL(4,d); |
|||
i++; |
|||
} |
|||
i=0; |
|||
d--; |
|||
} |
|||
d=9; |
|||
c--; |
|||
} |
|||
c=9; |
|||
a++; // iterate the first digit to count up while the last two digits count down.
|
|||
//b--; // this uncommented leaves the second digit blank
|
|||
} |
|||
a=9; |
|||
//a++;
|
|||
//a--;
|
|||
} |
|||
} |
|||
|
|||
|
|||
//=============================================//
|
|||
//Make a Number Number Countdown (Timers).
|
|||
void down(int a,int b,int c,int d){ |
|||
while (a != -1) { |
|||
while(b != -1){ |
|||
while(c != -1){ |
|||
while (d != -1) { |
|||
while (i<mydelay) { // i here is like a timer ! because we can't use delay function
|
|||
selectDwriteL(1,a); |
|||
selectDwriteL(2,b); |
|||
selectDwriteL(3,c); |
|||
selectDwriteL(4,d); |
|||
i++; |
|||
} |
|||
i=0; |
|||
d--; |
|||
} |
|||
d=9; |
|||
c--; |
|||
} |
|||
c=9; |
|||
b--; |
|||
} |
|||
b=9; |
|||
a--; |
|||
} |
|||
} |
|||
|
|||
//=============================================//
|
|||
//Select Wich Digit (selectD) is going to Display (writeL)
|
|||
void selectDwriteL(int d,int l){ |
|||
switch (d) { // choose a digit
|
|||
case 0: digitalWrite(d1, LOW); //case 0 - All ON
|
|||
digitalWrite(d2, LOW); |
|||
digitalWrite(d3, LOW); |
|||
digitalWrite(d4, LOW); |
|||
break; |
|||
case 1: digitalWrite(d1, LOW);//case 1 - Digit Number 1
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
case 2: digitalWrite(d1, HIGH);//case 1 - Digit Number 2
|
|||
digitalWrite(d2, LOW); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
case 3: digitalWrite(d1, HIGH);//case 1 - Digit Number 3
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, LOW); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
case 4: digitalWrite(d1, HIGH);//case 1 - Digit Number 4
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, LOW); |
|||
break; |
|||
} |
|||
|
|||
switch (l) { // choose a Number
|
|||
case 0: zero(); |
|||
break; |
|||
case 1: one(); |
|||
break; |
|||
case 2: two(); |
|||
break; |
|||
case 3: three(); |
|||
break; |
|||
case 4: four(); |
|||
break; |
|||
case 5: five(); |
|||
break; |
|||
case 6: six(); |
|||
break; |
|||
case 7: seven(); |
|||
break; |
|||
case 8: eight(); |
|||
break; |
|||
case 9: nine(); |
|||
break; |
|||
case 10: point(); // print a Point
|
|||
break; |
|||
case 11: one(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 12: two(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 13: three(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 14: four(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 15: five(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 16: six(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 17: seven(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 18: eight(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 19: nine(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
default: none(); // make all them off !
|
|||
break; |
|||
} |
|||
|
|||
delayMicroseconds(delayTime); // delayTime for nice display of the Number !
|
|||
|
|||
} |
|||
|
|||
//=============================================//
|
|||
//shown one Number in the 4 Digit
|
|||
void all(int n){ |
|||
selectDwriteL(0,n); |
|||
} |
|||
|
|||
//=============================================//
|
|||
void zero(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void one(){ |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void two(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, LOW); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void three(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void four(){ |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void five(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void six(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void seven(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void eight(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void nine(){ |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void point(){ |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, LOW); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, HIGH); |
|||
} |
|||
//=============================================//
|
|||
void none(){ |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, LOW); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
|
@ -0,0 +1,430 @@ |
|||
|
|||
|
|||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h" |
|||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp" |
|||
|
|||
// PIN FOR RECEIVER
|
|||
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
|
|||
|
|||
/*-----( Declare objects )-----*/ |
|||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
|||
decode_results results; // create instance of 'decode_results'
|
|||
|
|||
/*-----( Function )-----*/ |
|||
void translateIR() // takes action based on IR code received
|
|||
|
|||
// describing Remote IR codes
|
|||
|
|||
{ |
|||
|
|||
switch (results.value) |
|||
{ |
|||
case 0xFFA25D: Serial.println("POWER"); off(); break; |
|||
case 0xFFE21D: Serial.println("FUNC/STOP"); break; |
|||
case 0xFF629D: Serial.println("VOL+"); break; |
|||
case 0xFF22DD: Serial.println("FAST BACK"); break; |
|||
case 0xFF02FD: Serial.println("PAUSE"); break; |
|||
case 0xFFC23D: Serial.println("FAST FORWARD"); break; |
|||
case 0xFFE01F: Serial.println("DOWN"); break; |
|||
case 0xFFA857: Serial.println("VOL-"); break; |
|||
case 0xFF906F: Serial.println("UP"); break; |
|||
case 0xFF9867: Serial.println("EQ"); downup(6, 9, 0); off(); break; |
|||
case 0xFFB04F: Serial.println("ST/REPT"); downup(0, 9, 0); off(); break; |
|||
case 0xFF6897: Serial.println("0"); all(0); break; |
|||
case 0xFF30CF: Serial.println("1"); all(1); break; |
|||
case 0xFF18E7: Serial.println("2"); all(2); break; |
|||
case 0xFF7A85: Serial.println("3"); all(3); break; |
|||
case 0xFF10EF: Serial.println("4"); all(4); break; |
|||
case 0xFF38C7: Serial.println("5"); all(5); break; |
|||
case 0xFF5AA5: Serial.println("6"); all(6); break; |
|||
case 0xFF42BD: Serial.println("7"); all(7); break; |
|||
case 0xFF4AB5: Serial.println("8"); all(8); break; |
|||
case 0xFF52AD: Serial.println("9"); all(9); break; |
|||
case 0xFFFFFFFF: Serial.println(" REPEAT"); break; |
|||
|
|||
default: |
|||
Serial.println(" other button "); |
|||
|
|||
}// End Case
|
|||
|
|||
delay(1000); // Do not get immediate repeat
|
|||
|
|||
|
|||
} //END translateIR
|
|||
|
|||
///////////////////////////////////////////////
|
|||
|
|||
|
|||
//display pins
|
|||
int segA = 5; // >> 11
|
|||
int segB = 13; // >> 7
|
|||
int segC = 10; // >> 4
|
|||
int segD = 8; // >> 2
|
|||
int segE = 7; // >> 1
|
|||
int segF = 4; // >> 10
|
|||
int segG = 11; // >> 5
|
|||
int segPt = 9; // >> 3
|
|||
//------------//
|
|||
|
|||
//display digit
|
|||
int d1 = 6; // >> 12
|
|||
int d2 = 3; // >> 9
|
|||
int d3 = 2; // >> 8
|
|||
int d4 = 12; // >> 6
|
|||
//------------//
|
|||
|
|||
int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>
|
|||
int mydelay = 3000; // 50 is about one second, 3000 a minute
|
|||
int i = 0; |
|||
|
|||
//=============================================//
|
|||
//init all pin used
|
|||
void setup() { |
|||
Serial.begin(9600); |
|||
Serial.println("IR Receiver Button Decode - Initializing..."); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
|
|||
pinMode(2, OUTPUT); |
|||
// pinMode(3, OUTPUT); // reserved for IR input
|
|||
pinMode(4, OUTPUT); |
|||
pinMode(5, OUTPUT); |
|||
pinMode(6, OUTPUT); |
|||
pinMode(7, OUTPUT); |
|||
pinMode(8, OUTPUT); |
|||
pinMode(9, OUTPUT); |
|||
pinMode(10, OUTPUT); |
|||
pinMode(11, OUTPUT); |
|||
pinMode(12, OUTPUT); |
|||
pinMode(13, OUTPUT); |
|||
} |
|||
|
|||
|
|||
|
|||
//=======================================================================================//
|
|||
//void loop() {
|
|||
//downup(0,20,9,0); // numbers above 19 display as blank.
|
|||
////all(8);
|
|||
////writeN(1,9,0,4);
|
|||
//}
|
|||
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/ |
|||
{ |
|||
if (irrecv.decode(&results)) // have we received an IR signal?
|
|||
{ |
|||
// Serial.println(results.value); // for debugging
|
|||
translateIR(); |
|||
irrecv.resume(); // receive the next value
|
|||
} |
|||
|
|||
}/* --(end main loop )-- */ |
|||
|
|||
|
|||
//=======================================================================================//
|
|||
//Write a Number - writeN(1,9,9,0) -> 1990
|
|||
void writeN(int a, int b, int c, int d) { |
|||
selectDwriteL(1, a); |
|||
selectDwriteL(2, b); |
|||
selectDwriteL(3, c); |
|||
selectDwriteL(4, d); |
|||
} |
|||
|
|||
//=============================================//
|
|||
//Make a Number Number Countdown (Timers).
|
|||
void downup(int A, int C, int D) { |
|||
irrecv.resume(); |
|||
int a=0; |
|||
int c, d; |
|||
bool FLAG = 0; |
|||
while (a <= A) { |
|||
c = C; |
|||
d = D; |
|||
while (c != -1) { |
|||
while (d != -1) { |
|||
while (i < mydelay) { // i here is like a timer ! because we can't use delay function
|
|||
selectDwriteL(1, a); |
|||
selectDwriteL(3, c); |
|||
selectDwriteL(4, d); |
|||
if (irrecv.decode(&results)) // have we received an IR signal?
|
|||
{ |
|||
// if(results.value == 16753245){
|
|||
translateIR(); |
|||
FLAG = 1; |
|||
// break;
|
|||
irrecv.resume(); // receive the next value
|
|||
// }
|
|||
} |
|||
i++; |
|||
if(FLAG){d=0;a=A;c=0;i=mydelay;} |
|||
} |
|||
i = 0; |
|||
d--; |
|||
} |
|||
d = 9; |
|||
c--; |
|||
} |
|||
// c = 9; // third digit
|
|||
a++; // iterate the first digit to count up while the last two digits count down.
|
|||
//b--; // this uncommented leaves the second digit blank
|
|||
|
|||
} |
|||
} |
|||
|
|||
|
|||
//=============================================//
|
|||
//Make a Number Number Countdown (Timers).
|
|||
void down(int a, int b, int c, int d) { |
|||
while (a != -1) { |
|||
while (b != -1) { |
|||
while (c != -1) { |
|||
while (d != -1) { |
|||
while (i < mydelay) { // i here is like a timer ! because we can't use delay function
|
|||
selectDwriteL(1, a); |
|||
selectDwriteL(2, b); |
|||
selectDwriteL(3, c); |
|||
selectDwriteL(4, d); |
|||
i++; |
|||
} |
|||
i = 0; |
|||
d--; |
|||
} |
|||
d = 9; |
|||
c--; |
|||
} |
|||
c = 9; |
|||
b--; |
|||
} |
|||
b = 9; |
|||
a--; |
|||
} |
|||
} |
|||
|
|||
//=============================================//
|
|||
//Select Which Digit (selectD) is going to Display (writeL)
|
|||
void selectDwriteL(int d, int l) { |
|||
switch (d) { // choose a digit
|
|||
case 0: digitalWrite(d1, LOW); //case 0 - All ON
|
|||
digitalWrite(d2, LOW); |
|||
digitalWrite(d3, LOW); |
|||
digitalWrite(d4, LOW); |
|||
break; |
|||
case 1: digitalWrite(d1, LOW);//case 1 - Digit Number 1
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
case 2: digitalWrite(d1, HIGH);//case 1 - Digit Number 2
|
|||
digitalWrite(d2, LOW); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
case 3: digitalWrite(d1, HIGH);//case 1 - Digit Number 3
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, LOW); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
case 4: digitalWrite(d1, HIGH);//case 1 - Digit Number 4
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, LOW); |
|||
break; |
|||
case 5: digitalWrite(d1, HIGH); //case 0 - All ON
|
|||
digitalWrite(d2, HIGH); |
|||
digitalWrite(d3, HIGH); |
|||
digitalWrite(d4, HIGH); |
|||
break; |
|||
} |
|||
|
|||
switch (l) { // choose a Number
|
|||
case 0: zero(); |
|||
break; |
|||
case 1: one(); |
|||
break; |
|||
case 2: two(); |
|||
break; |
|||
case 3: three(); |
|||
break; |
|||
case 4: four(); |
|||
break; |
|||
case 5: five(); |
|||
break; |
|||
case 6: six(); |
|||
break; |
|||
case 7: seven(); |
|||
break; |
|||
case 8: eight(); |
|||
break; |
|||
case 9: nine(); |
|||
break; |
|||
case 10: point(); // print a Point
|
|||
break; |
|||
case 11: one(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 12: two(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 13: three(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 14: four(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 15: five(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 16: six(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 17: seven(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 18: eight(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case 19: nine(); digitalWrite(segPt, HIGH); |
|||
break; |
|||
case -1: none(); |
|||
break; |
|||
default: none(); // make all them off !
|
|||
break; |
|||
} |
|||
|
|||
delayMicroseconds(delayTime); // delayTime for nice display of the Number !
|
|||
|
|||
} |
|||
|
|||
//=============================================//
|
|||
//shown one Number in the 4 Digit
|
|||
void all(int n) { |
|||
selectDwriteL(0, n); |
|||
} |
|||
|
|||
void off() { |
|||
selectDwriteL(5, 0); |
|||
} |
|||
|
|||
|
|||
//=============================================//
|
|||
void zero() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void one() { |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void two() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, LOW); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void three() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void four() { |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void five() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void six() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void seven() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void eight() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, HIGH); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void nine() { |
|||
digitalWrite(segA, HIGH); |
|||
digitalWrite(segB, HIGH); |
|||
digitalWrite(segC, HIGH); |
|||
digitalWrite(segD, HIGH); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, HIGH); |
|||
digitalWrite(segG, HIGH); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
//=============================================//
|
|||
void point() { |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, LOW); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, HIGH); |
|||
} |
|||
//=============================================//
|
|||
void none() { |
|||
digitalWrite(segA, LOW); |
|||
digitalWrite(segB, LOW); |
|||
digitalWrite(segC, LOW); |
|||
digitalWrite(segD, LOW); |
|||
digitalWrite(segE, LOW); |
|||
digitalWrite(segF, LOW); |
|||
digitalWrite(segG, LOW); |
|||
digitalWrite(segPt, LOW); |
|||
} |
|||
|
@ -0,0 +1,100 @@ |
|||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h" |
|||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp" |
|||
#include <Servo.h> |
|||
|
|||
// PIN FOR RECEIVER
|
|||
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
|
|||
int pos = 0; // variable to store the servo position
|
|||
|
|||
/*-----( Declare objects )-----*/ |
|||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
|||
decode_results results; // create instance of 'decode_results'
|
|||
Servo myservo; // create servo object to control a servo
|
|||
|
|||
/*-----( Function )-----*/ |
|||
void translateIR() // takes action based on IR code received
|
|||
|
|||
// describing Remote IR codes
|
|||
|
|||
{ |
|||
|
|||
switch (results.value) |
|||
{ |
|||
case 0xFFA25D: Serial.println("POWER"); myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
|||
break; |
|||
case 0xFFE21D: Serial.println("FUNC/STOP"); myservo.detach(); // attaches the servo on pin 9 to the servo object
|
|||
break; |
|||
case 0xFF629D: Serial.println("VOL+"); digitalWrite(8, HIGH); break; |
|||
case 0xFF22DD: Serial.println("FAST BACK"); break; |
|||
case 0xFF02FD: Serial.println("PAUSE"); break; |
|||
case 0xFFC23D: Serial.println("FAST FORWARD"); break; |
|||
case 0xFFE01F: Serial.println("DOWN"); for (pos = 5; pos >=0; pos-=1){myservo.attach(9); myservo.write(pos); delay(15); myservo.detach();} break; |
|||
case 0xFFA857: Serial.println("VOL-"); digitalWrite(8, LOW); break; |
|||
case 0xFF906F: Serial.println("UP"); for (pos = 0; pos <=5; pos+=1){myservo.attach(9); myservo.write(pos); delay(15); myservo.detach();} break; |
|||
case 0xFF9867: Serial.println("EQ"); break; |
|||
case 0xFFB04F: Serial.println("ST/REPT"); break; |
|||
case 0xFF6897: Serial.println("0"); break; |
|||
case 0xFF30CF: Serial.println("1"); break; |
|||
case 0xFF18E7: Serial.println("2"); break; |
|||
case 0xFF7A85: Serial.println("3");; break; |
|||
case 0xFF10EF: Serial.println("4"); break; |
|||
case 0xFF38C7: Serial.println("5"); break; |
|||
case 0xFF5AA5: Serial.println("6"); break; |
|||
case 0xFF42BD: Serial.println("7"); break; |
|||
case 0xFF4AB5: Serial.println("8"); break; |
|||
case 0xFF52AD: Serial.println("9"); break; |
|||
//case 0xFFFFFFFF: Serial.println(" REPEAT"); digitalWrite(8, LOW); break;
|
|||
|
|||
default: |
|||
Serial.println(" other button "); |
|||
|
|||
}// End Case
|
|||
|
|||
delay(50); // Do not get immediate repeat
|
|||
|
|||
|
|||
} //END translateIR
|
|||
|
|||
|
|||
|
|||
//=============================================//
|
|||
//init all pin used
|
|||
void setup() { |
|||
Serial.begin(9600); |
|||
Serial.println("IR Receiver Button Decode - Initializing..."); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
|
|||
pinMode(2, OUTPUT); |
|||
// pinMode(3, OUTPUT); // reserved for IR input
|
|||
// pinMode(4, OUTPUT);
|
|||
// pinMode(5, OUTPUT);
|
|||
// pinMode(6, OUTPUT);
|
|||
// pinMode(7, OUTPUT);
|
|||
pinMode(8, OUTPUT); |
|||
pinMode(9, OUTPUT); |
|||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
|||
// pinMode(10, OUTPUT);
|
|||
// pinMode(11, OUTPUT);
|
|||
// pinMode(12, OUTPUT);
|
|||
// pinMode(13, OUTPUT);
|
|||
} |
|||
|
|||
|
|||
|
|||
//=======================================================================================//
|
|||
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/ |
|||
{ |
|||
if (irrecv.decode(&results)) // have we received an IR signal?
|
|||
{ |
|||
// Serial.println(results.value); // for debugging
|
|||
translateIR(); |
|||
irrecv.resume(); // receive the next value
|
|||
|
|||
} |
|||
|
|||
}/* --(end main loop )-- */ |
|||
|
|||
|
|||
|
|||
|
|||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,21 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.08
|
|||
#include "SR04.h" |
|||
#define TRIG_PIN 12 |
|||
#define ECHO_PIN 11 |
|||
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN); |
|||
long a; |
|||
|
|||
void setup() { |
|||
Serial.begin(9600); |
|||
delay(1000); |
|||
} |
|||
|
|||
void loop() { |
|||
a=sr04.Distance(); |
|||
if(a>0){ |
|||
Serial.print(a); |
|||
Serial.println("cm"); |
|||
} |
|||
delay(10); |
|||
} |
Binary file not shown.
Binary file not shown.
@ -0,0 +1,121 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
#include <SimpleDHT.h> |
|||
#include <avr/sleep.h> |
|||
// for DHT11,
|
|||
// VCC: 5V or 3V
|
|||
// GND: GND
|
|||
// DATA: 2
|
|||
int pinDHT11 = 2; |
|||
SimpleDHT11 dht11; |
|||
|
|||
void blink(int delayTime) { |
|||
digitalWrite(13, HIGH); |
|||
delay(delayTime); |
|||
digitalWrite(13, LOW); |
|||
delay(delayTime); |
|||
} |
|||
|
|||
void change(){ |
|||
delay(500); |
|||
blink(1000); |
|||
delay(500); |
|||
} |
|||
int ct = 0; |
|||
int SerialTransmit = 1; |
|||
int pin2_interrupt_flag = 0; |
|||
|
|||
void pin2_isr() |
|||
{ |
|||
sleep_disable(); |
|||
detachInterrupt(0); |
|||
pin2_interrupt_flag = 1; |
|||
} |
|||
|
|||
void setup() { |
|||
if(SerialTransmit){Serial.begin(9600);} |
|||
pinMode(13,OUTPUT); |
|||
} |
|||
|
|||
void loop() { |
|||
// start working...
|
|||
|
|||
// sleep_enable();
|
|||
// attachInterrupt(0, pin2_isr, LOW);
|
|||
/* 0, 1, or many lines of code here */ |
|||
|
|||
|
|||
if(SerialTransmit){ |
|||
Serial.println("================================="); |
|||
Serial.println("Sample DHT11..."); |
|||
} |
|||
byte temperature = 0; |
|||
byte humidity = 0; |
|||
byte data[40] = {0}; |
|||
// read with raw sample data
|
|||
if(ct >= 0){ |
|||
dht11.read(pinDHT11, &temperature, &humidity, data); |
|||
ct++; |
|||
|
|||
// TEMPERATURE
|
|||
for (int i = 0; i < (int)temperature/100; i++){ |
|||
blink(50); |
|||
} |
|||
|
|||
change(); |
|||
for (int i = 0; i < (int)temperature/10; i++){ |
|||
blink(50); |
|||
} |
|||
|
|||
change(); |
|||
for (int i = 0; i < (int)temperature%10; i++){ |
|||
blink(50); |
|||
} |
|||
|
|||
// HUMIDITY
|
|||
change(); |
|||
for (int i = 0; i < (int)humidity/10; i++){ |
|||
blink(50); |
|||
} |
|||
|
|||
change(); |
|||
for (int i = 0; i < (int)humidity%10; i++){ |
|||
blink(50); |
|||
} |
|||
} |
|||
|
|||
delay(1000); |
|||
|
|||
|
|||
if(SerialTransmit){ |
|||
if (dht11.read(pinDHT11, &temperature, &humidity, data)) { |
|||
Serial.print("Read DHT11 failed"); |
|||
return; |
|||
} |
|||
|
|||
Serial.print("Sample RAW Bits: "); |
|||
for (int i = 0; i < 40; i++) { |
|||
Serial.print((int)data[i]); |
|||
if (i > 0 && ((i + 1) % 4) == 0) { |
|||
Serial.print(' '); |
|||
} |
|||
} |
|||
Serial.println(""); |
|||
|
|||
Serial.print("Sample OK: "); |
|||
Serial.print((int)temperature); Serial.print(" *C, "); |
|||
Serial.print((int)humidity); Serial.println(" %"); |
|||
|
|||
// DHT11 sampling rate is 1HZ.
|
|||
delay(1000); |
|||
} |
|||
// set_sleep_mode(SLEEP_MODE_PWR_DOWN);
|
|||
// cli();
|
|||
// sleep_bod_disable();
|
|||
// sei();
|
|||
// sleep_cpu();
|
|||
// /* wake up here */
|
|||
// sleep_disable();
|
|||
// ct = 0;
|
|||
} |
Binary file not shown.
@ -0,0 +1,26 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.09
|
|||
|
|||
// Arduino pin numbers
|
|||
const int SW_pin = 2; // digital pin connected to switch output
|
|||
const int X_pin = 0; // analog pin connected to X output
|
|||
const int Y_pin = 1; // analog pin connected to Y output
|
|||
|
|||
void setup() { |
|||
pinMode(SW_pin, INPUT); |
|||
digitalWrite(SW_pin, HIGH); |
|||
Serial.begin(9600); |
|||
} |
|||
|
|||
void loop() { |
|||
Serial.print("Switch: "); |
|||
Serial.print(digitalRead(SW_pin)); |
|||
Serial.print("\n"); |
|||
Serial.print("X-axis: "); |
|||
Serial.print(analogRead(X_pin)); |
|||
Serial.print("\n"); |
|||
Serial.print("Y-axis: "); |
|||
Serial.println(analogRead(Y_pin)); |
|||
Serial.print("\n\n"); |
|||
delay(500); |
|||
} |
Binary file not shown.
Binary file not shown.
@ -0,0 +1,77 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h" |
|||
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp" |
|||
//#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremoteInt.h"
|
|||
int LEDPIN = 8; |
|||
|
|||
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
|
|||
/*-----( Declare objects )-----*/ |
|||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
|||
decode_results results; // create instance of 'decode_results'
|
|||
|
|||
/*-----( Function )-----*/ |
|||
void translateIR() // takes action based on IR code received
|
|||
|
|||
// describing Remote IR codes
|
|||
|
|||
{ |
|||
|
|||
switch(results.value) |
|||
{ |
|||
case 0xFFA25D: Serial.println("POWER"); digitalWrite(LEDPIN, HIGH); break; |
|||
case 0xFFE21D: Serial.println("FUNC/STOP"); digitalWrite(LEDPIN, LOW); break; |
|||
case 0xFF629D: Serial.println("VOL+"); break; |
|||
case 0xFF22DD: Serial.println("FAST BACK"); break; |
|||
case 0xFF02FD: Serial.println("PAUSE"); break; |
|||
case 0xFFC23D: Serial.println("FAST FORWARD"); break; |
|||
case 0xFFE01F: Serial.println("DOWN"); break; |
|||
case 0xFFA857: Serial.println("VOL-"); break; |
|||
case 0xFF906F: Serial.println("UP"); break; |
|||
case 0xFF9867: Serial.println("EQ"); break; |
|||
case 0xFFB04F: Serial.println("ST/REPT"); break; |
|||
case 0xFF6897: Serial.println("0"); break; |
|||
case 0xFF30CF: Serial.println("1"); break; |
|||
case 0xFF18E7: Serial.println("2"); break; |
|||
case 0xFF7A85: Serial.println("3"); break; |
|||
case 0xFF10EF: Serial.println("4"); break; |
|||
case 0xFF38C7: Serial.println("5"); break; |
|||
case 0xFF5AA5: Serial.println("6"); break; |
|||
case 0xFF42BD: Serial.println("7"); break; |
|||
case 0xFF4AB5: Serial.println("8"); break; |
|||
case 0xFF52AD: Serial.println("9"); break; |
|||
//case 0xFFFFFFFF: Serial.println(" REPEAT"); digitalWrite(8, LOW); break;
|
|||
|
|||
default: |
|||
Serial.println(" other button "); |
|||
|
|||
}// End Case
|
|||
|
|||
delay(100); // Do not get immediate repeat
|
|||
|
|||
|
|||
} //END translateIR
|
|||
void setup() /*----( SETUP: RUNS ONCE )----*/ |
|||
{ |
|||
Serial.begin(9600); |
|||
Serial.println("IR Receiver Button Decode - Initializing..."); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
pinMode(LEDPIN, OUTPUT); |
|||
Serial.println("Done."); |
|||
|
|||
}/*--(end setup )---*/ |
|||
|
|||
|
|||
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/ |
|||
{ |
|||
if (irrecv.decode(&results)) // have we received an IR signal?
|
|||
|
|||
{ |
|||
translateIR(); |
|||
//Serial.println(results.value);
|
|||
irrecv.resume(); // receive the next value
|
|||
} |
|||
}/* --(end main loop )-- */ |
|||
|
|||
|
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
@ -0,0 +1,128 @@ |
|||
/*
|
|||
* IRremote |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
|
|||
* Edited by Mitra to add new controller SANYO |
|||
* |
|||
* Interrupt code based on NECIRrcv by Joe Knapp |
|||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
|||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
|||
* |
|||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post) |
|||
* LG added by Darryl Smith (based on the JVC protocol) |
|||
*/ |
|||
|
|||
#ifndef IRremote_h |
|||
#define IRremote_h |
|||
|
|||
// The following are compile-time library options.
|
|||
// If you change them, recompile the library.
|
|||
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
|
|||
// TEST must be defined for the IRtest unittests to work. It will make some
|
|||
// methods virtual, which will be slightly slower, which is why it is optional.
|
|||
// #define DEBUG
|
|||
// #define TEST
|
|||
|
|||
// Results returned from the decoder
|
|||
class decode_results { |
|||
public: |
|||
int decode_type; // NEC, SONY, RC5, UNKNOWN
|
|||
union { // This is used for decoding Panasonic and Sharp data
|
|||
unsigned int panasonicAddress; |
|||
unsigned int sharpAddress; |
|||
}; |
|||
unsigned long value; // Decoded value
|
|||
int bits; // Number of bits in decoded value
|
|||
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
|
|||
int rawlen; // Number of records in rawbuf.
|
|||
}; |
|||
|
|||
// Values for decode_type
|
|||
#define NEC 1 |
|||
#define SONY 2 |
|||
#define RC5 3 |
|||
#define RC6 4 |
|||
#define DISH 5 |
|||
#define SHARP 6 |
|||
#define PANASONIC 7 |
|||
#define JVC 8 |
|||
#define SANYO 9 |
|||
#define MITSUBISHI 10 |
|||
#define SAMSUNG 11 |
|||
#define LG 12 |
|||
#define UNKNOWN -1 |
|||
|
|||
// Decoded value for NEC when a repeat code is received
|
|||
#define REPEAT 0xffffffff |
|||
|
|||
// main class for receiving IR
|
|||
class IRrecv |
|||
{ |
|||
public: |
|||
IRrecv(int recvpin); |
|||
void blink13(int blinkflag); |
|||
int decode(decode_results *results); |
|||
void enableIRIn(); |
|||
void resume(); |
|||
private: |
|||
// These are called by decode
|
|||
int getRClevel(decode_results *results, int *offset, int *used, int t1); |
|||
long decodeNEC(decode_results *results); |
|||
long decodeSony(decode_results *results); |
|||
long decodeSanyo(decode_results *results); |
|||
long decodeMitsubishi(decode_results *results); |
|||
long decodeRC5(decode_results *results); |
|||
long decodeRC6(decode_results *results); |
|||
long decodePanasonic(decode_results *results); |
|||
long decodeLG(decode_results *results); |
|||
long decodeJVC(decode_results *results); |
|||
long decodeSAMSUNG(decode_results *results); |
|||
long decodeHash(decode_results *results); |
|||
int compare(unsigned int oldval, unsigned int newval); |
|||
|
|||
} |
|||
; |
|||
|
|||
// Only used for testing; can remove virtual for shorter code
|
|||
#ifdef TEST |
|||
#define VIRTUAL virtual |
|||
#else |
|||
#define VIRTUAL |
|||
#endif |
|||
|
|||
class IRsend |
|||
{ |
|||
public: |
|||
IRsend() {} |
|||
void sendNEC(unsigned long data, int nbits); |
|||
void sendSony(unsigned long data, int nbits); |
|||
// Neither Sanyo nor Mitsubishi send is implemented yet
|
|||
// void sendSanyo(unsigned long data, int nbits);
|
|||
// void sendMitsubishi(unsigned long data, int nbits);
|
|||
void sendRaw(unsigned int buf[], int len, int hz); |
|||
void sendRC5(unsigned long data, int nbits); |
|||
void sendRC6(unsigned long data, int nbits); |
|||
void sendDISH(unsigned long data, int nbits); |
|||
void sendSharp(unsigned int address, unsigned int command); |
|||
void sendSharpRaw(unsigned long data, int nbits); |
|||
void sendPanasonic(unsigned int address, unsigned long data); |
|||
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
|
|||
// private:
|
|||
void sendSAMSUNG(unsigned long data, int nbits); |
|||
void enableIROut(int khz); |
|||
VIRTUAL void mark(int usec); |
|||
VIRTUAL void space(int usec); |
|||
} |
|||
; |
|||
|
|||
// Some useful constants
|
|||
|
|||
#define USECPERTICK 50 // microseconds per clock interrupt tick
|
|||
#define RAWBUF 100 // Length of raw duration buffer
|
|||
|
|||
// Marks tend to be 100us too long, and spaces 100us too short
|
|||
// when received due to sensor lag.
|
|||
#define MARK_EXCESS 100 |
|||
|
|||
#endif |
@ -0,0 +1,515 @@ |
|||
/*
|
|||
* IRremote |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
|||
* |
|||
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers |
|||
* |
|||
* Interrupt code based on NECIRrcv by Joe Knapp |
|||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
|||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
|||
* |
|||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post) |
|||
*/ |
|||
|
|||
#ifndef IRremoteint_h |
|||
#define IRremoteint_h |
|||
|
|||
#if defined(ARDUINO) && ARDUINO >= 100 |
|||
#include <Arduino.h> |
|||
#else |
|||
#include <WProgram.h> |
|||
#endif |
|||
|
|||
// define which timer to use
|
|||
//
|
|||
// Uncomment the timer you wish to use on your board. If you
|
|||
// are using another library which uses timer2, you have options
|
|||
// to switch IRremote to use a different timer.
|
|||
|
|||
// Arduino Mega
|
|||
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
//#define IR_USE_TIMER1 // tx = pin 11
|
|||
#define IR_USE_TIMER2 // tx = pin 9
|
|||
//#define IR_USE_TIMER3 // tx = pin 5
|
|||
//#define IR_USE_TIMER4 // tx = pin 6
|
|||
//#define IR_USE_TIMER5 // tx = pin 46
|
|||
|
|||
// Teensy 1.0
|
|||
#elif defined(__AVR_AT90USB162__) |
|||
#define IR_USE_TIMER1 // tx = pin 17
|
|||
|
|||
// Teensy 2.0
|
|||
#elif defined(__AVR_ATmega32U4__) |
|||
//#define IR_USE_TIMER1 // tx = pin 14
|
|||
//#define IR_USE_TIMER3 // tx = pin 9
|
|||
#define IR_USE_TIMER4_HS // tx = pin 10
|
|||
|
|||
// Teensy 3.0
|
|||
#elif defined(__MK20DX128__) |
|||
#define IR_USE_TIMER_CMT // tx = pin 5
|
|||
|
|||
// Teensy++ 1.0 & 2.0
|
|||
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) |
|||
//#define IR_USE_TIMER1 // tx = pin 25
|
|||
#define IR_USE_TIMER2 // tx = pin 1
|
|||
//#define IR_USE_TIMER3 // tx = pin 16
|
|||
|
|||
// Sanguino
|
|||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__) |
|||
//#define IR_USE_TIMER1 // tx = pin 13
|
|||
#define IR_USE_TIMER2 // tx = pin 14
|
|||
|
|||
// Atmega8
|
|||
#elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__) |
|||
#define IR_USE_TIMER1 // tx = pin 9
|
|||
|
|||
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
|
|||
#else |
|||
//#define IR_USE_TIMER1 // tx = pin 9
|
|||
#define IR_USE_TIMER2 // tx = pin 3
|
|||
#endif |
|||
|
|||
|
|||
|
|||
#ifdef F_CPU |
|||
#define SYSCLOCK F_CPU // main Arduino clock
|
|||
#else |
|||
#define SYSCLOCK 16000000 // main Arduino clock
|
|||
#endif |
|||
|
|||
#define ERR 0 |
|||
#define DECODED 1 |
|||
|
|||
|
|||
// defines for setting and clearing register bits
|
|||
#ifndef cbi |
|||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) |
|||
#endif |
|||
#ifndef sbi |
|||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) |
|||
#endif |
|||
|
|||
// Pulse parms are *50-100 for the Mark and *50+100 for the space
|
|||
// First MARK is the one after the long gap
|
|||
// pulse parameters in usec
|
|||
#define NEC_HDR_MARK 9000 |
|||
#define NEC_HDR_SPACE 4500 |
|||
#define NEC_BIT_MARK 560 |
|||
#define NEC_ONE_SPACE 1600 |
|||
#define NEC_ZERO_SPACE 560 |
|||
#define NEC_RPT_SPACE 2250 |
|||
|
|||
#define SONY_HDR_MARK 2400 |
|||
#define SONY_HDR_SPACE 600 |
|||
#define SONY_ONE_MARK 1200 |
|||
#define SONY_ZERO_MARK 600 |
|||
#define SONY_RPT_LENGTH 45000 |
|||
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
|
|||
|
|||
// SA 8650B
|
|||
#define SANYO_HDR_MARK 3500 // seen range 3500
|
|||
#define SANYO_HDR_SPACE 950 // seen 950
|
|||
#define SANYO_ONE_MARK 2400 // seen 2400
|
|||
#define SANYO_ZERO_MARK 700 // seen 700
|
|||
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
|||
#define SANYO_RPT_LENGTH 45000 |
|||
|
|||
// Mitsubishi RM 75501
|
|||
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
|
|||
|
|||
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
|
|||
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
|
|||
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
|
|||
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
|
|||
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
|||
// #define MITSUBISHI_RPT_LENGTH 45000
|
|||
|
|||
|
|||
#define RC5_T1 889 |
|||
#define RC5_RPT_LENGTH 46000 |
|||
|
|||
#define RC6_HDR_MARK 2666 |
|||
#define RC6_HDR_SPACE 889 |
|||
#define RC6_T1 444 |
|||
#define RC6_RPT_LENGTH 46000 |
|||
|
|||
#define SHARP_BIT_MARK 245 |
|||
#define SHARP_ONE_SPACE 1805 |
|||
#define SHARP_ZERO_SPACE 795 |
|||
#define SHARP_GAP 600000 |
|||
#define SHARP_TOGGLE_MASK 0x3FF |
|||
#define SHARP_RPT_SPACE 3000 |
|||
|
|||
#define DISH_HDR_MARK 400 |
|||
#define DISH_HDR_SPACE 6100 |
|||
#define DISH_BIT_MARK 400 |
|||
#define DISH_ONE_SPACE 1700 |
|||
#define DISH_ZERO_SPACE 2800 |
|||
#define DISH_RPT_SPACE 6200 |
|||
#define DISH_TOP_BIT 0x8000 |
|||
|
|||
#define PANASONIC_HDR_MARK 3502 |
|||
#define PANASONIC_HDR_SPACE 1750 |
|||
#define PANASONIC_BIT_MARK 502 |
|||
#define PANASONIC_ONE_SPACE 1244 |
|||
#define PANASONIC_ZERO_SPACE 400 |
|||
|
|||
#define JVC_HDR_MARK 8000 |
|||
#define JVC_HDR_SPACE 4000 |
|||
#define JVC_BIT_MARK 600 |
|||
#define JVC_ONE_SPACE 1600 |
|||
#define JVC_ZERO_SPACE 550 |
|||
#define JVC_RPT_LENGTH 60000 |
|||
|
|||
#define LG_HDR_MARK 8000 |
|||
#define LG_HDR_SPACE 4000 |
|||
#define LG_BIT_MARK 600 |
|||
#define LG_ONE_SPACE 1600 |
|||
#define LG_ZERO_SPACE 550 |
|||
#define LG_RPT_LENGTH 60000 |
|||
|
|||
#define SAMSUNG_HDR_MARK 5000 |
|||
#define SAMSUNG_HDR_SPACE 5000 |
|||
#define SAMSUNG_BIT_MARK 560 |
|||
#define SAMSUNG_ONE_SPACE 1600 |
|||
#define SAMSUNG_ZERO_SPACE 560 |
|||
#define SAMSUNG_RPT_SPACE 2250 |
|||
|
|||
|
|||
#define SHARP_BITS 15 |
|||
#define DISH_BITS 16 |
|||
|
|||
#define TOLERANCE 25 // percent tolerance in measurements
|
|||
#define LTOL (1.0 - TOLERANCE/100.) |
|||
#define UTOL (1.0 + TOLERANCE/100.) |
|||
|
|||
#define _GAP 5000 // Minimum map between transmissions
|
|||
#define GAP_TICKS (_GAP/USECPERTICK) |
|||
|
|||
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK)) |
|||
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1)) |
|||
|
|||
// receiver states
|
|||
#define STATE_IDLE 2 |
|||
#define STATE_MARK 3 |
|||
#define STATE_SPACE 4 |
|||
#define STATE_STOP 5 |
|||
|
|||
// information for the interrupt handler
|
|||
typedef struct { |
|||
uint8_t recvpin; // pin for IR data from detector
|
|||
uint8_t rcvstate; // state machine
|
|||
uint8_t blinkflag; // TRUE to enable blinking of pin 13 on IR processing
|
|||
unsigned int timer; // state timer, counts 50uS ticks.
|
|||
unsigned int rawbuf[RAWBUF]; // raw data
|
|||
uint8_t rawlen; // counter of entries in rawbuf
|
|||
} |
|||
irparams_t; |
|||
|
|||
// Defined in IRremote.cpp
|
|||
extern volatile irparams_t irparams; |
|||
|
|||
// IR detector output is active low
|
|||
#define MARK 0 |
|||
#define SPACE 1 |
|||
|
|||
#define TOPBIT 0x80000000 |
|||
|
|||
#define NEC_BITS 32 |
|||
#define SONY_BITS 12 |
|||
#define SANYO_BITS 12 |
|||
#define MITSUBISHI_BITS 16 |
|||
#define MIN_RC5_SAMPLES 11 |
|||
#define MIN_RC6_SAMPLES 1 |
|||
#define PANASONIC_BITS 48 |
|||
#define JVC_BITS 16 |
|||
#define LG_BITS 28 |
|||
#define SAMSUNG_BITS 32 |
|||
|
|||
|
|||
|
|||
|
|||
// defines for timer2 (8 bits)
|
|||
#if defined(IR_USE_TIMER2) |
|||
#define TIMER_RESET |
|||
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1)) |
|||
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1))) |
|||
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A)) |
|||
#define TIMER_DISABLE_INTR (TIMSK2 = 0) |
|||
#define TIMER_INTR_NAME TIMER2_COMPA_vect |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \ |
|||
TCCR2A = _BV(WGM20); \ |
|||
TCCR2B = _BV(WGM22) | _BV(CS20); \ |
|||
OCR2A = pwmval; \ |
|||
OCR2B = pwmval / 3; \ |
|||
}) |
|||
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000) |
|||
#if (TIMER_COUNT_TOP < 256) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR2A = _BV(WGM21); \ |
|||
TCCR2B = _BV(CS20); \ |
|||
OCR2A = TIMER_COUNT_TOP; \ |
|||
TCNT2 = 0; \ |
|||
}) |
|||
#else |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR2A = _BV(WGM21); \ |
|||
TCCR2B = _BV(CS21); \ |
|||
OCR2A = TIMER_COUNT_TOP / 8; \ |
|||
TCNT2 = 0; \ |
|||
}) |
|||
#endif |
|||
#if defined(CORE_OC2B_PIN) |
|||
#define TIMER_PWM_PIN CORE_OC2B_PIN /* Teensy */ |
|||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define TIMER_PWM_PIN 9 /* Arduino Mega */ |
|||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__) |
|||
#define TIMER_PWM_PIN 14 /* Sanguino */ |
|||
#else |
|||
#define TIMER_PWM_PIN 3 /* Arduino Duemilanove, Diecimila, LilyPad, etc */ |
|||
#endif |
|||
|
|||
|
|||
// defines for timer1 (16 bits)
|
|||
#elif defined(IR_USE_TIMER1) |
|||
#define TIMER_RESET |
|||
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1)) |
|||
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1))) |
|||
#if defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__) |
|||
#define TIMER_ENABLE_INTR (TIMSK = _BV(OCIE1A)) |
|||
#define TIMER_DISABLE_INTR (TIMSK = 0) |
|||
#else |
|||
#define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A)) |
|||
#define TIMER_DISABLE_INTR (TIMSK1 = 0) |
|||
#endif |
|||
#define TIMER_INTR_NAME TIMER1_COMPA_vect |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \ |
|||
TCCR1A = _BV(WGM11); \ |
|||
TCCR1B = _BV(WGM13) | _BV(CS10); \ |
|||
ICR1 = pwmval; \ |
|||
OCR1A = pwmval / 3; \ |
|||
}) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR1A = 0; \ |
|||
TCCR1B = _BV(WGM12) | _BV(CS10); \ |
|||
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \ |
|||
TCNT1 = 0; \ |
|||
}) |
|||
#if defined(CORE_OC1A_PIN) |
|||
#define TIMER_PWM_PIN CORE_OC1A_PIN /* Teensy */ |
|||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define TIMER_PWM_PIN 11 /* Arduino Mega */ |
|||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__) |
|||
#define TIMER_PWM_PIN 13 /* Sanguino */ |
|||
#else |
|||
#define TIMER_PWM_PIN 9 /* Arduino Duemilanove, Diecimila, LilyPad, etc */ |
|||
#endif |
|||
|
|||
|
|||
// defines for timer3 (16 bits)
|
|||
#elif defined(IR_USE_TIMER3) |
|||
#define TIMER_RESET |
|||
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1)) |
|||
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1))) |
|||
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A)) |
|||
#define TIMER_DISABLE_INTR (TIMSK3 = 0) |
|||
#define TIMER_INTR_NAME TIMER3_COMPA_vect |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \ |
|||
TCCR3A = _BV(WGM31); \ |
|||
TCCR3B = _BV(WGM33) | _BV(CS30); \ |
|||
ICR3 = pwmval; \ |
|||
OCR3A = pwmval / 3; \ |
|||
}) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR3A = 0; \ |
|||
TCCR3B = _BV(WGM32) | _BV(CS30); \ |
|||
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \ |
|||
TCNT3 = 0; \ |
|||
}) |
|||
#if defined(CORE_OC3A_PIN) |
|||
#define TIMER_PWM_PIN CORE_OC3A_PIN /* Teensy */ |
|||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define TIMER_PWM_PIN 5 /* Arduino Mega */ |
|||
#else |
|||
#error "Please add OC3A pin number here\n" |
|||
#endif |
|||
|
|||
|
|||
// defines for timer4 (10 bits, high speed option)
|
|||
#elif defined(IR_USE_TIMER4_HS) |
|||
#define TIMER_RESET |
|||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1)) |
|||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1))) |
|||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4)) |
|||
#define TIMER_DISABLE_INTR (TIMSK4 = 0) |
|||
#define TIMER_INTR_NAME TIMER4_OVF_vect |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \ |
|||
TCCR4A = (1<<PWM4A); \ |
|||
TCCR4B = _BV(CS40); \ |
|||
TCCR4C = 0; \ |
|||
TCCR4D = (1<<WGM40); \ |
|||
TCCR4E = 0; \ |
|||
TC4H = pwmval >> 8; \ |
|||
OCR4C = pwmval; \ |
|||
TC4H = (pwmval / 3) >> 8; \ |
|||
OCR4A = (pwmval / 3) & 255; \ |
|||
}) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR4A = 0; \ |
|||
TCCR4B = _BV(CS40); \ |
|||
TCCR4C = 0; \ |
|||
TCCR4D = 0; \ |
|||
TCCR4E = 0; \ |
|||
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \ |
|||
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \ |
|||
TC4H = 0; \ |
|||
TCNT4 = 0; \ |
|||
}) |
|||
#if defined(CORE_OC4A_PIN) |
|||
#define TIMER_PWM_PIN CORE_OC4A_PIN /* Teensy */ |
|||
#elif defined(__AVR_ATmega32U4__) |
|||
#define TIMER_PWM_PIN 13 /* Leonardo */ |
|||
#else |
|||
#error "Please add OC4A pin number here\n" |
|||
#endif |
|||
|
|||
|
|||
// defines for timer4 (16 bits)
|
|||
#elif defined(IR_USE_TIMER4) |
|||
#define TIMER_RESET |
|||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1)) |
|||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1))) |
|||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A)) |
|||
#define TIMER_DISABLE_INTR (TIMSK4 = 0) |
|||
#define TIMER_INTR_NAME TIMER4_COMPA_vect |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \ |
|||
TCCR4A = _BV(WGM41); \ |
|||
TCCR4B = _BV(WGM43) | _BV(CS40); \ |
|||
ICR4 = pwmval; \ |
|||
OCR4A = pwmval / 3; \ |
|||
}) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR4A = 0; \ |
|||
TCCR4B = _BV(WGM42) | _BV(CS40); \ |
|||
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \ |
|||
TCNT4 = 0; \ |
|||
}) |
|||
#if defined(CORE_OC4A_PIN) |
|||
#define TIMER_PWM_PIN CORE_OC4A_PIN |
|||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define TIMER_PWM_PIN 6 /* Arduino Mega */ |
|||
#else |
|||
#error "Please add OC4A pin number here\n" |
|||
#endif |
|||
|
|||
|
|||
// defines for timer5 (16 bits)
|
|||
#elif defined(IR_USE_TIMER5) |
|||
#define TIMER_RESET |
|||
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1)) |
|||
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1))) |
|||
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A)) |
|||
#define TIMER_DISABLE_INTR (TIMSK5 = 0) |
|||
#define TIMER_INTR_NAME TIMER5_COMPA_vect |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \ |
|||
TCCR5A = _BV(WGM51); \ |
|||
TCCR5B = _BV(WGM53) | _BV(CS50); \ |
|||
ICR5 = pwmval; \ |
|||
OCR5A = pwmval / 3; \ |
|||
}) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
TCCR5A = 0; \ |
|||
TCCR5B = _BV(WGM52) | _BV(CS50); \ |
|||
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \ |
|||
TCNT5 = 0; \ |
|||
}) |
|||
#if defined(CORE_OC5A_PIN) |
|||
#define TIMER_PWM_PIN CORE_OC5A_PIN |
|||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define TIMER_PWM_PIN 46 /* Arduino Mega */ |
|||
#else |
|||
#error "Please add OC5A pin number here\n" |
|||
#endif |
|||
|
|||
|
|||
// defines for special carrier modulator timer
|
|||
#elif defined(IR_USE_TIMER_CMT) |
|||
#define TIMER_RESET ({ \ |
|||
uint8_t tmp = CMT_MSC; \ |
|||
CMT_CMD2 = 30; \ |
|||
}) |
|||
#define TIMER_ENABLE_PWM CORE_PIN5_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_DSE|PORT_PCR_SRE |
|||
#define TIMER_DISABLE_PWM CORE_PIN5_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_DSE|PORT_PCR_SRE |
|||
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT) |
|||
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT) |
|||
#define TIMER_INTR_NAME cmt_isr |
|||
#ifdef ISR |
|||
#undef ISR |
|||
#endif |
|||
#define ISR(f) void f(void) |
|||
#if F_BUS == 48000000 |
|||
#define CMT_PPS_VAL 5 |
|||
#else |
|||
#define CMT_PPS_VAL 2 |
|||
#endif |
|||
#define TIMER_CONFIG_KHZ(val) ({ \ |
|||
SIM_SCGC4 |= SIM_SCGC4_CMT; \ |
|||
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \ |
|||
CMT_PPS = CMT_PPS_VAL; \ |
|||
CMT_CGH1 = 2667 / val; \ |
|||
CMT_CGL1 = 5333 / val; \ |
|||
CMT_CMD1 = 0; \ |
|||
CMT_CMD2 = 30; \ |
|||
CMT_CMD3 = 0; \ |
|||
CMT_CMD4 = 0; \ |
|||
CMT_OC = 0x60; \ |
|||
CMT_MSC = 0x01; \ |
|||
}) |
|||
#define TIMER_CONFIG_NORMAL() ({ \ |
|||
SIM_SCGC4 |= SIM_SCGC4_CMT; \ |
|||
CMT_PPS = CMT_PPS_VAL; \ |
|||
CMT_CGH1 = 1; \ |
|||
CMT_CGL1 = 1; \ |
|||
CMT_CMD1 = 0; \ |
|||
CMT_CMD2 = 30; \ |
|||
CMT_CMD3 = 0; \ |
|||
CMT_CMD4 = 19; \ |
|||
CMT_OC = 0; \ |
|||
CMT_MSC = 0x03; \ |
|||
}) |
|||
#define TIMER_PWM_PIN 5 |
|||
|
|||
|
|||
#else // unknown timer
|
|||
#error "Internal code configuration error, no known IR_USE_TIMER# defined\n" |
|||
#endif |
|||
|
|||
|
|||
// defines for blinking the LED
|
|||
#if defined(CORE_LED0_PIN) |
|||
#define BLINKLED CORE_LED0_PIN |
|||
#define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH)) |
|||
#define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW)) |
|||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define BLINKLED 13 |
|||
#define BLINKLED_ON() (PORTB |= B10000000) |
|||
#define BLINKLED_OFF() (PORTB &= B01111111) |
|||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__) |
|||
#define BLINKLED 0 |
|||
#define BLINKLED_ON() (PORTD |= B00000001) |
|||
#define BLINKLED_OFF() (PORTD &= B11111110) |
|||
#else |
|||
#define BLINKLED 13 |
|||
#define BLINKLED_ON() (PORTB |= B00100000) |
|||
#define BLINKLED_OFF() (PORTB &= B11011111) |
|||
#endif |
|||
|
|||
#endif |
@ -0,0 +1,458 @@ |
|||
|
|||
GNU LESSER GENERAL PUBLIC LICENSE |
|||
Version 2.1, February 1999 |
|||
|
|||
Copyright (C) 1991, 1999 Free Software Foundation, Inc. |
|||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|||
Everyone is permitted to copy and distribute verbatim copies |
|||
of this license document, but changing it is not allowed. |
|||
|
|||
[This is the first released version of the Lesser GPL. It also counts |
|||
as the successor of the GNU Library Public License, version 2, hence |
|||
the version number 2.1.] |
|||
|
|||
Preamble |
|||
|
|||
The licenses for most software are designed to take away your |
|||
freedom to share and change it. By contrast, the GNU General Public |
|||
Licenses are intended to guarantee your freedom to share and change |
|||
free software--to make sure the software is free for all its users. |
|||
|
|||
This license, the Lesser General Public License, applies to some |
|||
specially designated software packages--typically libraries--of the |
|||
Free Software Foundation and other authors who decide to use it. You |
|||
can use it too, but we suggest you first think carefully about whether |
|||
this license or the ordinary General Public License is the better |
|||
strategy to use in any particular case, based on the explanations below. |
|||
|
|||
When we speak of free software, we are referring to freedom of use, |
|||
not price. Our General Public Licenses are designed to make sure that |
|||
you have the freedom to distribute copies of free software (and charge |
|||
for this service if you wish); that you receive source code or can get |
|||
it if you want it; that you can change the software and use pieces of |
|||
it in new free programs; and that you are informed that you can do |
|||
these things. |
|||
|
|||
To protect your rights, we need to make restrictions that forbid |
|||
distributors to deny you these rights or to ask you to surrender these |
|||
rights. These restrictions translate to certain responsibilities for |
|||
you if you distribute copies of the library or if you modify it. |
|||
|
|||
For example, if you distribute copies of the library, whether gratis |
|||
or for a fee, you must give the recipients all the rights that we gave |
|||
you. You must make sure that they, too, receive or can get the source |
|||
code. If you link other code with the library, you must provide |
|||
complete object files to the recipients, so that they can relink them |
|||
with the library after making changes to the library and recompiling |
|||
it. And you must show them these terms so they know their rights. |
|||
|
|||
We protect your rights with a two-step method: (1) we copyright the |
|||
library, and (2) we offer you this license, which gives you legal |
|||
permission to copy, distribute and/or modify the library. |
|||
|
|||
To protect each distributor, we want to make it very clear that |
|||
there is no warranty for the free library. Also, if the library is |
|||
modified by someone else and passed on, the recipients should know |
|||
that what they have is not the original version, so that the original |
|||
author's reputation will not be affected by problems that might be |
|||
introduced by others. |
|||
|
|||
Finally, software patents pose a constant threat to the existence of |
|||
any free program. We wish to make sure that a company cannot |
|||
effectively restrict the users of a free program by obtaining a |
|||
restrictive license from a patent holder. Therefore, we insist that |
|||
any patent license obtained for a version of the library must be |
|||
consistent with the full freedom of use specified in this license. |
|||
|
|||
Most GNU software, including some libraries, is covered by the |
|||
ordinary GNU General Public License. This license, the GNU Lesser |
|||
General Public License, applies to certain designated libraries, and |
|||
is quite different from the ordinary General Public License. We use |
|||
this license for certain libraries in order to permit linking those |
|||
libraries into non-free programs. |
|||
|
|||
When a program is linked with a library, whether statically or using |
|||
a shared library, the combination of the two is legally speaking a |
|||
combined work, a derivative of the original library. The ordinary |
|||
General Public License therefore permits such linking only if the |
|||
entire combination fits its criteria of freedom. The Lesser General |
|||
Public License permits more lax criteria for linking other code with |
|||
the library. |
|||
|
|||
We call this license the "Lesser" General Public License because it |
|||
does Less to protect the user's freedom than the ordinary General |
|||
Public License. It also provides other free software developers Less |
|||
of an advantage over competing non-free programs. These disadvantages |
|||
are the reason we use the ordinary General Public License for many |
|||
libraries. However, the Lesser license provides advantages in certain |
|||
special circumstances. |
|||
|
|||
For example, on rare occasions, there may be a special need to |
|||
encourage the widest possible use of a certain library, so that it becomes |
|||
a de-facto standard. To achieve this, non-free programs must be |
|||
allowed to use the library. A more frequent case is that a free |
|||
library does the same job as widely used non-free libraries. In this |
|||
case, there is little to gain by limiting the free library to free |
|||
software only, so we use the Lesser General Public License. |
|||
|
|||
In other cases, permission to use a particular library in non-free |
|||
programs enables a greater number of people to use a large body of |
|||
free software. For example, permission to use the GNU C Library in |
|||
non-free programs enables many more people to use the whole GNU |
|||
operating system, as well as its variant, the GNU/Linux operating |
|||
system. |
|||
|
|||
Although the Lesser General Public License is Less protective of the |
|||
users' freedom, it does ensure that the user of a program that is |
|||
linked with the Library has the freedom and the wherewithal to run |
|||
that program using a modified version of the Library. |
|||
|
|||
The precise terms and conditions for copying, distribution and |
|||
modification follow. Pay close attention to the difference between a |
|||
"work based on the library" and a "work that uses the library". The |
|||
former contains code derived from the library, whereas the latter must |
|||
be combined with the library in order to run. |
|||
|
|||
GNU LESSER GENERAL PUBLIC LICENSE |
|||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION |
|||
|
|||
0. This License Agreement applies to any software library or other |
|||
program which contains a notice placed by the copyright holder or |
|||
other authorized party saying it may be distributed under the terms of |
|||
this Lesser General Public License (also called "this License"). |
|||
Each licensee is addressed as "you". |
|||
|
|||
A "library" means a collection of software functions and/or data |
|||
prepared so as to be conveniently linked with application programs |
|||
(which use some of those functions and data) to form executables. |
|||
|
|||
The "Library", below, refers to any such software library or work |
|||
which has been distributed under these terms. A "work based on the |
|||
Library" means either the Library or any derivative work under |
|||
copyright law: that is to say, a work containing the Library or a |
|||
portion of it, either verbatim or with modifications and/or translated |
|||
straightforwardly into another language. (Hereinafter, translation is |
|||
included without limitation in the term "modification".) |
|||
|
|||
"Source code" for a work means the preferred form of the work for |
|||
making modifications to it. For a library, complete source code means |
|||
all the source code for all modules it contains, plus any associated |
|||
interface definition files, plus the scripts used to control compilation |
|||
and installation of the library. |
|||
|
|||
Activities other than copying, distribution and modification are not |
|||
covered by this License; they are outside its scope. The act of |
|||
running a program using the Library is not restricted, and output from |
|||
such a program is covered only if its contents constitute a work based |
|||
on the Library (independent of the use of the Library in a tool for |
|||
writing it). Whether that is true depends on what the Library does |
|||
and what the program that uses the Library does. |
|||
|
|||
1. You may copy and distribute verbatim copies of the Library's |
|||
complete source code as you receive it, in any medium, provided that |
|||
you conspicuously and appropriately publish on each copy an |
|||
appropriate copyright notice and disclaimer of warranty; keep intact |
|||
all the notices that refer to this License and to the absence of any |
|||
warranty; and distribute a copy of this License along with the |
|||
Library. |
|||
|
|||
You may charge a fee for the physical act of transferring a copy, |
|||
and you may at your option offer warranty protection in exchange for a |
|||
fee. |
|||
|
|||
2. You may modify your copy or copies of the Library or any portion |
|||
of it, thus forming a work based on the Library, and copy and |
|||
distribute such modifications or work under the terms of Section 1 |
|||
above, provided that you also meet all of these conditions: |
|||
|
|||
a) The modified work must itself be a software library. |
|||
|
|||
b) You must cause the files modified to carry prominent notices |
|||
stating that you changed the files and the date of any change. |
|||
|
|||
c) You must cause the whole of the work to be licensed at no |
|||
charge to all third parties under the terms of this License. |
|||
|
|||
d) If a facility in the modified Library refers to a function or a |
|||
table of data to be supplied by an application program that uses |
|||
the facility, other than as an argument passed when the facility |
|||
is invoked, then you must make a good faith effort to ensure that, |
|||
in the event an application does not supply such function or |
|||
table, the facility still operates, and performs whatever part of |
|||
its purpose remains meaningful. |
|||
|
|||
(For example, a function in a library to compute square roots has |
|||
a purpose that is entirely well-defined independent of the |
|||
application. Therefore, Subsection 2d requires that any |
|||
application-supplied function or table used by this function must |
|||
be optional: if the application does not supply it, the square |
|||
root function must still compute square roots.) |
|||
|
|||
These requirements apply to the modified work as a whole. If |
|||
identifiable sections of that work are not derived from the Library, |
|||
and can be reasonably considered independent and separate works in |
|||
themselves, then this License, and its terms, do not apply to those |
|||
sections when you distribute them as separate works. But when you |
|||
distribute the same sections as part of a whole which is a work based |
|||
on the Library, the distribution of the whole must be on the terms of |
|||
this License, whose permissions for other licensees extend to the |
|||
entire whole, and thus to each and every part regardless of who wrote |
|||
it. |
|||
|
|||
Thus, it is not the intent of this section to claim rights or contest |
|||
your rights to work written entirely by you; rather, the intent is to |
|||
exercise the right to control the distribution of derivative or |
|||
collective works based on the Library. |
|||
|
|||
In addition, mere aggregation of another work not based on the Library |
|||
with the Library (or with a work based on the Library) on a volume of |
|||
a storage or distribution medium does not bring the other work under |
|||
the scope of this License. |
|||
|
|||
3. You may opt to apply the terms of the ordinary GNU General Public |
|||
License instead of this License to a given copy of the Library. To do |
|||
this, you must alter all the notices that refer to this License, so |
|||
that they refer to the ordinary GNU General Public License, version 2, |
|||
instead of to this License. (If a newer version than version 2 of the |
|||
ordinary GNU General Public License has appeared, then you can specify |
|||
that version instead if you wish.) Do not make any other change in |
|||
these notices. |
|||
|
|||
Once this change is made in a given copy, it is irreversible for |
|||
that copy, so the ordinary GNU General Public License applies to all |
|||
subsequent copies and derivative works made from that copy. |
|||
|
|||
This option is useful when you wish to copy part of the code of |
|||
the Library into a program that is not a library. |
|||
|
|||
4. You may copy and distribute the Library (or a portion or |
|||
derivative of it, under Section 2) in object code or executable form |
|||
under the terms of Sections 1 and 2 above provided that you accompany |
|||
it with the complete corresponding machine-readable source code, which |
|||
must be distributed under the terms of Sections 1 and 2 above on a |
|||
medium customarily used for software interchange. |
|||
|
|||
If distribution of object code is made by offering access to copy |
|||
from a designated place, then offering equivalent access to copy the |
|||
source code from the same place satisfies the requirement to |
|||
distribute the source code, even though third parties are not |
|||
compelled to copy the source along with the object code. |
|||
|
|||
5. A program that contains no derivative of any portion of the |
|||
Library, but is designed to work with the Library by being compiled or |
|||
linked with it, is called a "work that uses the Library". Such a |
|||
work, in isolation, is not a derivative work of the Library, and |
|||
therefore falls outside the scope of this License. |
|||
|
|||
However, linking a "work that uses the Library" with the Library |
|||
creates an executable that is a derivative of the Library (because it |
|||
contains portions of the Library), rather than a "work that uses the |
|||
library". The executable is therefore covered by this License. |
|||
Section 6 states terms for distribution of such executables. |
|||
|
|||
When a "work that uses the Library" uses material from a header file |
|||
that is part of the Library, the object code for the work may be a |
|||
derivative work of the Library even though the source code is not. |
|||
Whether this is true is especially significant if the work can be |
|||
linked without the Library, or if the work is itself a library. The |
|||
threshold for this to be true is not precisely defined by law. |
|||
|
|||
If such an object file uses only numerical parameters, data |
|||
structure layouts and accessors, and small macros and small inline |
|||
functions (ten lines or less in length), then the use of the object |
|||
file is unrestricted, regardless of whether it is legally a derivative |
|||
work. (Executables containing this object code plus portions of the |
|||
Library will still fall under Section 6.) |
|||
|
|||
Otherwise, if the work is a derivative of the Library, you may |
|||
distribute the object code for the work under the terms of Section 6. |
|||
Any executables containing that work also fall under Section 6, |
|||
whether or not they are linked directly with the Library itself. |
|||
|
|||
6. As an exception to the Sections above, you may also combine or |
|||
link a "work that uses the Library" with the Library to produce a |
|||
work containing portions of the Library, and distribute that work |
|||
under terms of your choice, provided that the terms permit |
|||
modification of the work for the customer's own use and reverse |
|||
engineering for debugging such modifications. |
|||
|
|||
You must give prominent notice with each copy of the work that the |
|||
Library is used in it and that the Library and its use are covered by |
|||
this License. You must supply a copy of this License. If the work |
|||
during execution displays copyright notices, you must include the |
|||
copyright notice for the Library among them, as well as a reference |
|||
directing the user to the copy of this License. Also, you must do one |
|||
of these things: |
|||
|
|||
a) Accompany the work with the complete corresponding |
|||
machine-readable source code for the Library including whatever |
|||
changes were used in the work (which must be distributed under |
|||
Sections 1 and 2 above); and, if the work is an executable linked |
|||
with the Library, with the complete machine-readable "work that |
|||
uses the Library", as object code and/or source code, so that the |
|||
user can modify the Library and then relink to produce a modified |
|||
executable containing the modified Library. (It is understood |
|||
that the user who changes the contents of definitions files in the |
|||
Library will not necessarily be able to recompile the application |
|||
to use the modified definitions.) |
|||
|
|||
b) Use a suitable shared library mechanism for linking with the |
|||
Library. A suitable mechanism is one that (1) uses at run time a |
|||
copy of the library already present on the user's computer system, |
|||
rather than copying library functions into the executable, and (2) |
|||
will operate properly with a modified version of the library, if |
|||
the user installs one, as long as the modified version is |
|||
interface-compatible with the version that the work was made with. |
|||
|
|||
c) Accompany the work with a written offer, valid for at |
|||
least three years, to give the same user the materials |
|||
specified in Subsection 6a, above, for a charge no more |
|||
than the cost of performing this distribution. |
|||
|
|||
d) If distribution of the work is made by offering access to copy |
|||
from a designated place, offer equivalent access to copy the above |
|||
specified materials from the same place. |
|||
|
|||
e) Verify that the user has already received a copy of these |
|||
materials or that you have already sent this user a copy. |
|||
|
|||
For an executable, the required form of the "work that uses the |
|||
Library" must include any data and utility programs needed for |
|||
reproducing the executable from it. However, as a special exception, |
|||
the materials to be distributed need not include anything that is |
|||
normally distributed (in either source or binary form) with the major |
|||
components (compiler, kernel, and so on) of the operating system on |
|||
which the executable runs, unless that component itself accompanies |
|||
the executable. |
|||
|
|||
It may happen that this requirement contradicts the license |
|||
restrictions of other proprietary libraries that do not normally |
|||
accompany the operating system. Such a contradiction means you cannot |
|||
use both them and the Library together in an executable that you |
|||
distribute. |
|||
|
|||
7. You may place library facilities that are a work based on the |
|||
Library side-by-side in a single library together with other library |
|||
facilities not covered by this License, and distribute such a combined |
|||
library, provided that the separate distribution of the work based on |
|||
the Library and of the other library facilities is otherwise |
|||
permitted, and provided that you do these two things: |
|||
|
|||
a) Accompany the combined library with a copy of the same work |
|||
based on the Library, uncombined with any other library |
|||
facilities. This must be distributed under the terms of the |
|||
Sections above. |
|||
|
|||
b) Give prominent notice with the combined library of the fact |
|||
that part of it is a work based on the Library, and explaining |
|||
where to find the accompanying uncombined form of the same work. |
|||
|
|||
8. You may not copy, modify, sublicense, link with, or distribute |
|||
the Library except as expressly provided under this License. Any |
|||
attempt otherwise to copy, modify, sublicense, link with, or |
|||
distribute the Library is void, and will automatically terminate your |
|||
rights under this License. However, parties who have received copies, |
|||
or rights, from you under this License will not have their licenses |
|||
terminated so long as such parties remain in full compliance. |
|||
|
|||
9. You are not required to accept this License, since you have not |
|||
signed it. However, nothing else grants you permission to modify or |
|||
distribute the Library or its derivative works. These actions are |
|||
prohibited by law if you do not accept this License. Therefore, by |
|||
modifying or distributing the Library (or any work based on the |
|||
Library), you indicate your acceptance of this License to do so, and |
|||
all its terms and conditions for copying, distributing or modifying |
|||
the Library or works based on it. |
|||
|
|||
10. Each time you redistribute the Library (or any work based on the |
|||
Library), the recipient automatically receives a license from the |
|||
original licensor to copy, distribute, link with or modify the Library |
|||
subject to these terms and conditions. You may not impose any further |
|||
restrictions on the recipients' exercise of the rights granted herein. |
|||
You are not responsible for enforcing compliance by third parties with |
|||
this License. |
|||
|
|||
11. If, as a consequence of a court judgment or allegation of patent |
|||
infringement or for any other reason (not limited to patent issues), |
|||
conditions are imposed on you (whether by court order, agreement or |
|||
otherwise) that contradict the conditions of this License, they do not |
|||
excuse you from the conditions of this License. If you cannot |
|||
distribute so as to satisfy simultaneously your obligations under this |
|||
License and any other pertinent obligations, then as a consequence you |
|||
may not distribute the Library at all. For example, if a patent |
|||
license would not permit royalty-free redistribution of the Library by |
|||
all those who receive copies directly or indirectly through you, then |
|||
the only way you could satisfy both it and this License would be to |
|||
refrain entirely from distribution of the Library. |
|||
|
|||
If any portion of this section is held invalid or unenforceable under any |
|||
particular circumstance, the balance of the section is intended to apply, |
|||
and the section as a whole is intended to apply in other circumstances. |
|||
|
|||
It is not the purpose of this section to induce you to infringe any |
|||
patents or other property right claims or to contest validity of any |
|||
such claims; this section has the sole purpose of protecting the |
|||
integrity of the free software distribution system which is |
|||
implemented by public license practices. Many people have made |
|||
generous contributions to the wide range of software distributed |
|||
through that system in reliance on consistent application of that |
|||
system; it is up to the author/donor to decide if he or she is willing |
|||
to distribute software through any other system and a licensee cannot |
|||
impose that choice. |
|||
|
|||
This section is intended to make thoroughly clear what is believed to |
|||
be a consequence of the rest of this License. |
|||
|
|||
12. If the distribution and/or use of the Library is restricted in |
|||
certain countries either by patents or by copyrighted interfaces, the |
|||
original copyright holder who places the Library under this License may add |
|||
an explicit geographical distribution limitation excluding those countries, |
|||
so that distribution is permitted only in or among countries not thus |
|||
excluded. In such case, this License incorporates the limitation as if |
|||
written in the body of this License. |
|||
|
|||
13. The Free Software Foundation may publish revised and/or new |
|||
versions of the Lesser General Public License from time to time. |
|||
Such new versions will be similar in spirit to the present version, |
|||
but may differ in detail to address new problems or concerns. |
|||
|
|||
Each version is given a distinguishing version number. If the Library |
|||
specifies a version number of this License which applies to it and |
|||
"any later version", you have the option of following the terms and |
|||
conditions either of that version or of any later version published by |
|||
the Free Software Foundation. If the Library does not specify a |
|||
license version number, you may choose any version ever published by |
|||
the Free Software Foundation. |
|||
|
|||
14. If you wish to incorporate parts of the Library into other free |
|||
programs whose distribution conditions are incompatible with these, |
|||
write to the author to ask for permission. For software which is |
|||
copyrighted by the Free Software Foundation, write to the Free |
|||
Software Foundation; we sometimes make exceptions for this. Our |
|||
decision will be guided by the two goals of preserving the free status |
|||
of all derivatives of our free software and of promoting the sharing |
|||
and reuse of software generally. |
|||
|
|||
NO WARRANTY |
|||
|
|||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO |
|||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. |
|||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR |
|||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY |
|||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE |
|||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE |
|||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME |
|||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. |
|||
|
|||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN |
|||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY |
|||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU |
|||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR |
|||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE |
|||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING |
|||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A |
|||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF |
|||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
|||
DAMAGES. |
|||
|
@ -0,0 +1,168 @@ |
|||
/*
|
|||
* IRrecord: record and play back IR signals as a minimal |
|||
* An IR detector/demodulator must be connected to the input RECV_PIN. |
|||
* An IR LED must be connected to the output PWM pin 3. |
|||
* A button must be connected to the input BUTTON_PIN; this is the |
|||
* send button. |
|||
* A visible LED can be connected to STATUS_PIN to provide status. |
|||
* |
|||
* The logic is: |
|||
* If the button is pressed, send the IR code. |
|||
* If an IR code is received, record it. |
|||
* |
|||
* Version 0.11 September, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
*/ |
|||
|
|||
#include </Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h> |
|||
#include </Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp> |
|||
|
|||
int RECV_PIN = 11; |
|||
int BUTTON_PIN = 12; |
|||
int STATUS_PIN = 13; |
|||
|
|||
IRrecv irrecv(RECV_PIN); |
|||
IRsend irsend; |
|||
|
|||
decode_results results; |
|||
|
|||
void setup() |
|||
{ |
|||
Serial.begin(9600); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
pinMode(BUTTON_PIN, INPUT); |
|||
pinMode(STATUS_PIN, OUTPUT); |
|||
} |
|||
|
|||
// Storage for the recorded code
|
|||
int codeType = -1; // The type of code
|
|||
unsigned long codeValue; // The code value if not raw
|
|||
unsigned int rawCodes[RAWBUF]; // The durations if raw
|
|||
int codeLen; // The length of the code
|
|||
int toggle = 0; // The RC5/6 toggle state
|
|||
|
|||
// Stores the code for later playback
|
|||
// Most of this code is just logging
|
|||
void storeCode(decode_results *results) { |
|||
codeType = results->decode_type; |
|||
int count = results->rawlen; |
|||
if (codeType == UNKNOWN) { |
|||
Serial.println("Received unknown code, saving as raw"); |
|||
codeLen = results->rawlen - 1; |
|||
// To store raw codes:
|
|||
// Drop first value (gap)
|
|||
// Convert from ticks to microseconds
|
|||
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
|
|||
for (int i = 1; i <= codeLen; i++) { |
|||
if (i % 2) { |
|||
// Mark
|
|||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS; |
|||
Serial.print(" m"); |
|||
} |
|||
else { |
|||
// Space
|
|||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS; |
|||
Serial.print(" s"); |
|||
} |
|||
Serial.print(rawCodes[i - 1], DEC); |
|||
} |
|||
Serial.println(""); |
|||
} |
|||
else { |
|||
if (codeType == NEC) { |
|||
Serial.print("Received NEC: "); |
|||
if (results->value == REPEAT) { |
|||
// Don't record a NEC repeat value as that's useless.
|
|||
Serial.println("repeat; ignoring."); |
|||
return; |
|||
} |
|||
} |
|||
else if (codeType == SONY) { |
|||
Serial.print("Received SONY: "); |
|||
} |
|||
else if (codeType == RC5) { |
|||
Serial.print("Received RC5: "); |
|||
} |
|||
else if (codeType == RC6) { |
|||
Serial.print("Received RC6: "); |
|||
} |
|||
else { |
|||
Serial.print("Unexpected codeType "); |
|||
Serial.print(codeType, DEC); |
|||
Serial.println(""); |
|||
} |
|||
Serial.println(results->value, HEX); |
|||
codeValue = results->value; |
|||
codeLen = results->bits; |
|||
} |
|||
} |
|||
|
|||
void sendCode(int repeat) { |
|||
if (codeType == NEC) { |
|||
if (repeat) { |
|||
irsend.sendNEC(REPEAT, codeLen); |
|||
Serial.println("Sent NEC repeat"); |
|||
} |
|||
else { |
|||
irsend.sendNEC(codeValue, codeLen); |
|||
Serial.print("Sent NEC "); |
|||
Serial.println(codeValue, HEX); |
|||
} |
|||
} |
|||
else if (codeType == SONY) { |
|||
irsend.sendSony(codeValue, codeLen); |
|||
Serial.print("Sent Sony "); |
|||
Serial.println(codeValue, HEX); |
|||
} |
|||
else if (codeType == RC5 || codeType == RC6) { |
|||
if (!repeat) { |
|||
// Flip the toggle bit for a new button press
|
|||
toggle = 1 - toggle; |
|||
} |
|||
// Put the toggle bit into the code to send
|
|||
codeValue = codeValue & ~(1 << (codeLen - 1)); |
|||
codeValue = codeValue | (toggle << (codeLen - 1)); |
|||
if (codeType == RC5) { |
|||
Serial.print("Sent RC5 "); |
|||
Serial.println(codeValue, HEX); |
|||
irsend.sendRC5(codeValue, codeLen); |
|||
} |
|||
else { |
|||
irsend.sendRC6(codeValue, codeLen); |
|||
Serial.print("Sent RC6 "); |
|||
Serial.println(codeValue, HEX); |
|||
} |
|||
} |
|||
else if (codeType == UNKNOWN /* i.e. raw */) { |
|||
// Assume 38 KHz
|
|||
irsend.sendRaw(rawCodes, codeLen, 38); |
|||
Serial.println("Sent raw"); |
|||
} |
|||
} |
|||
|
|||
int lastButtonState; |
|||
|
|||
void loop() { |
|||
// If button pressed, send the code.
|
|||
int buttonState = digitalRead(BUTTON_PIN); |
|||
if (lastButtonState == HIGH && buttonState == LOW) { |
|||
Serial.println("Released"); |
|||
irrecv.enableIRIn(); // Re-enable receiver
|
|||
} |
|||
|
|||
if (buttonState) { |
|||
Serial.println("Pressed, sending"); |
|||
digitalWrite(STATUS_PIN, HIGH); |
|||
sendCode(lastButtonState == buttonState); |
|||
digitalWrite(STATUS_PIN, LOW); |
|||
delay(50); // Wait a bit between retransmissions
|
|||
} |
|||
else if (irrecv.decode(&results)) { |
|||
digitalWrite(STATUS_PIN, HIGH); |
|||
storeCode(&results); |
|||
irrecv.resume(); // resume receiver
|
|||
digitalWrite(STATUS_PIN, LOW); |
|||
} |
|||
lastButtonState = buttonState; |
|||
} |
@ -0,0 +1,128 @@ |
|||
/*
|
|||
* IRremote |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
|
|||
* Edited by Mitra to add new controller SANYO |
|||
* |
|||
* Interrupt code based on NECIRrcv by Joe Knapp |
|||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
|||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
|||
* |
|||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post) |
|||
* LG added by Darryl Smith (based on the JVC protocol) |
|||
*/ |
|||
|
|||
#ifndef IRremote_h |
|||
#define IRremote_h |
|||
|
|||
// The following are compile-time library options.
|
|||
// If you change them, recompile the library.
|
|||
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
|
|||
// TEST must be defined for the IRtest unittests to work. It will make some
|
|||
// methods virtual, which will be slightly slower, which is why it is optional.
|
|||
// #define DEBUG
|
|||
// #define TEST
|
|||
|
|||
// Results returned from the decoder
|
|||
class decode_results { |
|||
public: |
|||
int decode_type; // NEC, SONY, RC5, UNKNOWN
|
|||
union { // This is used for decoding Panasonic and Sharp data
|
|||
unsigned int panasonicAddress; |
|||
unsigned int sharpAddress; |
|||
}; |
|||
unsigned long value; // Decoded value
|
|||
int bits; // Number of bits in decoded value
|
|||
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
|
|||
int rawlen; // Number of records in rawbuf.
|
|||
}; |
|||
|
|||
// Values for decode_type
|
|||
#define NEC 1 |
|||
#define SONY 2 |
|||
#define RC5 3 |
|||
#define RC6 4 |
|||
#define DISH 5 |
|||
#define SHARP 6 |
|||
#define PANASONIC 7 |
|||
#define JVC 8 |
|||
#define SANYO 9 |
|||
#define MITSUBISHI 10 |
|||
#define SAMSUNG 11 |
|||
#define LG 12 |
|||
#define UNKNOWN -1 |
|||
|
|||
// Decoded value for NEC when a repeat code is received
|
|||
#define REPEAT 0xffffffff |
|||
|
|||
// main class for receiving IR
|
|||
class IRrecv |
|||
{ |
|||
public: |
|||
IRrecv(int recvpin); |
|||
void blink13(int blinkflag); |
|||
int decode(decode_results *results); |
|||
void enableIRIn(); |
|||
void resume(); |
|||
private: |
|||
// These are called by decode
|
|||
int getRClevel(decode_results *results, int *offset, int *used, int t1); |
|||
long decodeNEC(decode_results *results); |
|||
long decodeSony(decode_results *results); |
|||
long decodeSanyo(decode_results *results); |
|||
long decodeMitsubishi(decode_results *results); |
|||
long decodeRC5(decode_results *results); |
|||
long decodeRC6(decode_results *results); |
|||
long decodePanasonic(decode_results *results); |
|||
long decodeLG(decode_results *results); |
|||
long decodeJVC(decode_results *results); |
|||
long decodeSAMSUNG(decode_results *results); |
|||
long decodeHash(decode_results *results); |
|||
int compare(unsigned int oldval, unsigned int newval); |
|||
|
|||
} |
|||
; |
|||
|
|||
// Only used for testing; can remove virtual for shorter code
|
|||
#ifdef TEST |
|||
#define VIRTUAL virtual |
|||
#else |
|||
#define VIRTUAL |
|||
#endif |
|||
|
|||
class IRsend |
|||
{ |
|||
public: |
|||
IRsend() {} |
|||
void sendNEC(unsigned long data, int nbits); |
|||
void sendSony(unsigned long data, int nbits); |
|||
// Neither Sanyo nor Mitsubishi send is implemented yet
|
|||
// void sendSanyo(unsigned long data, int nbits);
|
|||
// void sendMitsubishi(unsigned long data, int nbits);
|
|||
void sendRaw(unsigned int buf[], int len, int hz); |
|||
void sendRC5(unsigned long data, int nbits); |
|||
void sendRC6(unsigned long data, int nbits); |
|||
void sendDISH(unsigned long data, int nbits); |
|||
void sendSharp(unsigned int address, unsigned int command); |
|||
void sendSharpRaw(unsigned long data, int nbits); |
|||
void sendPanasonic(unsigned int address, unsigned long data); |
|||
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
|
|||
// private:
|
|||
void sendSAMSUNG(unsigned long data, int nbits); |
|||
void enableIROut(int khz); |
|||
VIRTUAL void mark(int usec); |
|||
VIRTUAL void space(int usec); |
|||
} |
|||
; |
|||
|
|||
// Some useful constants
|
|||
|
|||
#define USECPERTICK 50 // microseconds per clock interrupt tick
|
|||
#define RAWBUF 100 // Length of raw duration buffer
|
|||
|
|||
// Marks tend to be 100us too long, and spaces 100us too short
|
|||
// when received due to sensor lag.
|
|||
#define MARK_EXCESS 100 |
|||
|
|||
#endif |
@ -0,0 +1,29 @@ |
|||
/*
|
|||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv |
|||
* An IR detector/demodulator must be connected to the input RECV_PIN. |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
*/ |
|||
|
|||
#include <IRremote.h> |
|||
|
|||
int RECV_PIN = 11; |
|||
|
|||
IRrecv irrecv(RECV_PIN); |
|||
|
|||
decode_results results; |
|||
|
|||
void setup() |
|||
{ |
|||
Serial.begin(9600); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
} |
|||
|
|||
void loop() { |
|||
if (irrecv.decode(&results)) { |
|||
Serial.println(results.value, HEX); |
|||
irrecv.resume(); // Receive the next value
|
|||
} |
|||
delay(100); |
|||
} |
@ -0,0 +1,85 @@ |
|||
/*
|
|||
* IRremote: IRrecvDump - dump details of IR codes with IRrecv |
|||
* An IR detector/demodulator must be connected to the input RECV_PIN. |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post) |
|||
* LG added by Darryl Smith (based on the JVC protocol) |
|||
*/ |
|||
|
|||
#include <IRremote.h> |
|||
|
|||
int RECV_PIN = 11; |
|||
|
|||
IRrecv irrecv(RECV_PIN); |
|||
|
|||
decode_results results; |
|||
|
|||
void setup() |
|||
{ |
|||
Serial.begin(9600); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
} |
|||
|
|||
// Dumps out the decode_results structure.
|
|||
// Call this after IRrecv::decode()
|
|||
// void * to work around compiler issue
|
|||
//void dump(void *v) {
|
|||
// decode_results *results = (decode_results *)v
|
|||
void dump(decode_results *results) { |
|||
int count = results->rawlen; |
|||
if (results->decode_type == UNKNOWN) { |
|||
Serial.print("Unknown encoding: "); |
|||
} |
|||
else if (results->decode_type == NEC) { |
|||
Serial.print("Decoded NEC: "); |
|||
} |
|||
else if (results->decode_type == SONY) { |
|||
Serial.print("Decoded SONY: "); |
|||
} |
|||
else if (results->decode_type == RC5) { |
|||
Serial.print("Decoded RC5: "); |
|||
} |
|||
else if (results->decode_type == RC6) { |
|||
Serial.print("Decoded RC6: "); |
|||
} |
|||
else if (results->decode_type == PANASONIC) { |
|||
Serial.print("Decoded PANASONIC - Address: "); |
|||
Serial.print(results->panasonicAddress,HEX); |
|||
Serial.print(" Value: "); |
|||
} |
|||
else if (results->decode_type == LG) { |
|||
Serial.print("Decoded LG: "); |
|||
} |
|||
else if (results->decode_type == JVC) { |
|||
Serial.print("Decoded JVC: "); |
|||
} |
|||
Serial.print(results->value, HEX); |
|||
Serial.print(" ("); |
|||
Serial.print(results->bits, DEC); |
|||
Serial.println(" bits)"); |
|||
Serial.print("Raw ("); |
|||
Serial.print(count, DEC); |
|||
Serial.print("): "); |
|||
|
|||
for (int i = 0; i < count; i++) { |
|||
if ((i % 2) == 1) { |
|||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
else { |
|||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
Serial.print(" "); |
|||
} |
|||
Serial.println(""); |
|||
} |
|||
|
|||
|
|||
void loop() { |
|||
if (irrecv.decode(&results)) { |
|||
Serial.println(results.value, HEX); |
|||
dump(&results); |
|||
irrecv.resume(); // Receive the next value
|
|||
} |
|||
} |
@ -0,0 +1,85 @@ |
|||
/*
|
|||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv |
|||
* An IR detector/demodulator must be connected to the input RECV_PIN. |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
*/ |
|||
|
|||
#include <IRremote.h> |
|||
|
|||
int RECV_PIN = 11; |
|||
int RELAY_PIN = 4; |
|||
|
|||
IRrecv irrecv(RECV_PIN); |
|||
decode_results results; |
|||
|
|||
// Dumps out the decode_results structure.
|
|||
// Call this after IRrecv::decode()
|
|||
// void * to work around compiler issue
|
|||
//void dump(void *v) {
|
|||
// decode_results *results = (decode_results *)v
|
|||
void dump(decode_results *results) { |
|||
int count = results->rawlen; |
|||
if (results->decode_type == UNKNOWN) { |
|||
Serial.println("Could not decode message"); |
|||
} |
|||
else { |
|||
if (results->decode_type == NEC) { |
|||
Serial.print("Decoded NEC: "); |
|||
} |
|||
else if (results->decode_type == SONY) { |
|||
Serial.print("Decoded SONY: "); |
|||
} |
|||
else if (results->decode_type == RC5) { |
|||
Serial.print("Decoded RC5: "); |
|||
} |
|||
else if (results->decode_type == RC6) { |
|||
Serial.print("Decoded RC6: "); |
|||
} |
|||
Serial.print(results->value, HEX); |
|||
Serial.print(" ("); |
|||
Serial.print(results->bits, DEC); |
|||
Serial.println(" bits)"); |
|||
} |
|||
Serial.print("Raw ("); |
|||
Serial.print(count, DEC); |
|||
Serial.print("): "); |
|||
|
|||
for (int i = 0; i < count; i++) { |
|||
if ((i % 2) == 1) { |
|||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
else { |
|||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
Serial.print(" "); |
|||
} |
|||
Serial.println(""); |
|||
} |
|||
|
|||
void setup() |
|||
{ |
|||
pinMode(RELAY_PIN, OUTPUT); |
|||
pinMode(13, OUTPUT); |
|||
Serial.begin(9600); |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
} |
|||
|
|||
int on = 0; |
|||
unsigned long last = millis(); |
|||
|
|||
void loop() { |
|||
if (irrecv.decode(&results)) { |
|||
// If it's been at least 1/4 second since the last
|
|||
// IR received, toggle the relay
|
|||
if (millis() - last > 250) { |
|||
on = !on; |
|||
digitalWrite(RELAY_PIN, on ? HIGH : LOW); |
|||
digitalWrite(13, on ? HIGH : LOW); |
|||
dump(&results); |
|||
} |
|||
last = millis(); |
|||
irrecv.resume(); // Receive the next value
|
|||
} |
|||
} |
@ -0,0 +1,25 @@ |
|||
/*
|
|||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend |
|||
* An IR LED must be connected to Arduino PWM pin 3. |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
*/ |
|||
|
|||
#include <IRremote.h> |
|||
|
|||
IRsend irsend; |
|||
|
|||
void setup() |
|||
{ |
|||
Serial.begin(9600); |
|||
} |
|||
|
|||
void loop() { |
|||
if (Serial.read() != -1) { |
|||
for (int i = 0; i < 3; i++) { |
|||
irsend.sendSony(0xa90, 12); // Sony TV power code
|
|||
delay(40); |
|||
} |
|||
} |
|||
} |
@ -0,0 +1,190 @@ |
|||
/*
|
|||
* IRremote: IRtest unittest |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
* |
|||
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST" |
|||
* You must then recompile the library by removing IRremote.o and restarting |
|||
* the arduino IDE. |
|||
*/ |
|||
|
|||
#include <IRremote.h> |
|||
#include <IRremoteInt.h> |
|||
|
|||
// Dumps out the decode_results structure.
|
|||
// Call this after IRrecv::decode()
|
|||
// void * to work around compiler issue
|
|||
//void dump(void *v) {
|
|||
// decode_results *results = (decode_results *)v
|
|||
void dump(decode_results *results) { |
|||
int count = results->rawlen; |
|||
if (results->decode_type == UNKNOWN) { |
|||
Serial.println("Could not decode message"); |
|||
} |
|||
else { |
|||
if (results->decode_type == NEC) { |
|||
Serial.print("Decoded NEC: "); |
|||
} |
|||
else if (results->decode_type == SONY) { |
|||
Serial.print("Decoded SONY: "); |
|||
} |
|||
else if (results->decode_type == RC5) { |
|||
Serial.print("Decoded RC5: "); |
|||
} |
|||
else if (results->decode_type == RC6) { |
|||
Serial.print("Decoded RC6: "); |
|||
} |
|||
Serial.print(results->value, HEX); |
|||
Serial.print(" ("); |
|||
Serial.print(results->bits, DEC); |
|||
Serial.println(" bits)"); |
|||
} |
|||
Serial.print("Raw ("); |
|||
Serial.print(count, DEC); |
|||
Serial.print("): "); |
|||
|
|||
for (int i = 0; i < count; i++) { |
|||
if ((i % 2) == 1) { |
|||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
else { |
|||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
Serial.print(" "); |
|||
} |
|||
Serial.println(""); |
|||
} |
|||
|
|||
IRrecv irrecv(0); |
|||
decode_results results; |
|||
|
|||
class IRsendDummy : |
|||
public IRsend |
|||
{ |
|||
public: |
|||
// For testing, just log the marks/spaces
|
|||
#define SENDLOG_LEN 128 |
|||
int sendlog[SENDLOG_LEN]; |
|||
int sendlogcnt; |
|||
IRsendDummy() : |
|||
IRsend() { |
|||
} |
|||
void reset() { |
|||
sendlogcnt = 0; |
|||
} |
|||
void mark(int time) { |
|||
sendlog[sendlogcnt] = time; |
|||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++; |
|||
} |
|||
void space(int time) { |
|||
sendlog[sendlogcnt] = -time; |
|||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++; |
|||
} |
|||
// Copies the dummy buf into the interrupt buf
|
|||
void useDummyBuf() { |
|||
int last = SPACE; |
|||
irparams.rcvstate = STATE_STOP; |
|||
irparams.rawlen = 1; // Skip the gap
|
|||
for (int i = 0 ; i < sendlogcnt; i++) { |
|||
if (sendlog[i] < 0) { |
|||
if (last == MARK) { |
|||
// New space
|
|||
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK; |
|||
last = SPACE; |
|||
} |
|||
else { |
|||
// More space
|
|||
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK; |
|||
} |
|||
} |
|||
else if (sendlog[i] > 0) { |
|||
if (last == SPACE) { |
|||
// New mark
|
|||
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK; |
|||
last = MARK; |
|||
} |
|||
else { |
|||
// More mark
|
|||
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK; |
|||
} |
|||
} |
|||
} |
|||
if (irparams.rawlen % 2) { |
|||
irparams.rawlen--; // Remove trailing space
|
|||
} |
|||
} |
|||
}; |
|||
|
|||
IRsendDummy irsenddummy; |
|||
|
|||
void verify(unsigned long val, int bits, int type) { |
|||
irsenddummy.useDummyBuf(); |
|||
irrecv.decode(&results); |
|||
Serial.print("Testing "); |
|||
Serial.print(val, HEX); |
|||
if (results.value == val && results.bits == bits && results.decode_type == type) { |
|||
Serial.println(": OK"); |
|||
} |
|||
else { |
|||
Serial.println(": Error"); |
|||
dump(&results); |
|||
} |
|||
} |
|||
|
|||
void testNEC(unsigned long val, int bits) { |
|||
irsenddummy.reset(); |
|||
irsenddummy.sendNEC(val, bits); |
|||
verify(val, bits, NEC); |
|||
} |
|||
void testSony(unsigned long val, int bits) { |
|||
irsenddummy.reset(); |
|||
irsenddummy.sendSony(val, bits); |
|||
verify(val, bits, SONY); |
|||
} |
|||
void testRC5(unsigned long val, int bits) { |
|||
irsenddummy.reset(); |
|||
irsenddummy.sendRC5(val, bits); |
|||
verify(val, bits, RC5); |
|||
} |
|||
void testRC6(unsigned long val, int bits) { |
|||
irsenddummy.reset(); |
|||
irsenddummy.sendRC6(val, bits); |
|||
verify(val, bits, RC6); |
|||
} |
|||
|
|||
void test() { |
|||
Serial.println("NEC tests"); |
|||
testNEC(0x00000000, 32); |
|||
testNEC(0xffffffff, 32); |
|||
testNEC(0xaaaaaaaa, 32); |
|||
testNEC(0x55555555, 32); |
|||
testNEC(0x12345678, 32); |
|||
Serial.println("Sony tests"); |
|||
testSony(0xfff, 12); |
|||
testSony(0x000, 12); |
|||
testSony(0xaaa, 12); |
|||
testSony(0x555, 12); |
|||
testSony(0x123, 12); |
|||
Serial.println("RC5 tests"); |
|||
testRC5(0xfff, 12); |
|||
testRC5(0x000, 12); |
|||
testRC5(0xaaa, 12); |
|||
testRC5(0x555, 12); |
|||
testRC5(0x123, 12); |
|||
Serial.println("RC6 tests"); |
|||
testRC6(0xfffff, 20); |
|||
testRC6(0x00000, 20); |
|||
testRC6(0xaaaaa, 20); |
|||
testRC6(0x55555, 20); |
|||
testRC6(0x12345, 20); |
|||
} |
|||
|
|||
void setup() |
|||
{ |
|||
Serial.begin(9600); |
|||
test(); |
|||
} |
|||
|
|||
void loop() { |
|||
} |
@ -0,0 +1,290 @@ |
|||
/*
|
|||
* Test send/receive functions of IRremote, using a pair of Arduinos. |
|||
* |
|||
* Arduino #1 should have an IR LED connected to the send pin (3). |
|||
* Arduino #2 should have an IR detector/demodulator connected to the |
|||
* receive pin (11) and a visible LED connected to pin 3. |
|||
* |
|||
* The cycle: |
|||
* Arduino #1 will wait 2 seconds, then run through the tests. |
|||
* It repeats this forever. |
|||
* Arduino #2 will wait for at least one second of no signal |
|||
* (to synchronize with #1). It will then wait for the same test |
|||
* signals. It will log all the status to the serial port. It will |
|||
* also indicate status through the LED, which will flash each time a test |
|||
* is completed. If there is an error, it will light up for 5 seconds. |
|||
* |
|||
* The test passes if the LED flashes 19 times, pauses, and then repeats. |
|||
* The test fails if the LED lights for 5 seconds. |
|||
* |
|||
* The test software automatically decides which board is the sender and which is |
|||
* the receiver by looking for an input on the send pin, which will indicate |
|||
* the sender. You should hook the serial port to the receiver for debugging. |
|||
* |
|||
* Copyright 2010 Ken Shirriff |
|||
* http://arcfn.com
|
|||
*/ |
|||
|
|||
#include <IRremote.h> |
|||
|
|||
int RECV_PIN = 11; |
|||
int LED_PIN = 3; |
|||
|
|||
IRrecv irrecv(RECV_PIN); |
|||
IRsend irsend; |
|||
|
|||
decode_results results; |
|||
|
|||
#define RECEIVER 1 |
|||
#define SENDER 2 |
|||
#define ERROR 3 |
|||
|
|||
int mode; |
|||
|
|||
void setup() |
|||
{ |
|||
Serial.begin(9600); |
|||
// Check RECV_PIN to decide if we're RECEIVER or SENDER
|
|||
if (digitalRead(RECV_PIN) == HIGH) { |
|||
mode = RECEIVER; |
|||
irrecv.enableIRIn(); |
|||
pinMode(LED_PIN, OUTPUT); |
|||
digitalWrite(LED_PIN, LOW); |
|||
Serial.println("Receiver mode"); |
|||
} |
|||
else { |
|||
mode = SENDER; |
|||
Serial.println("Sender mode"); |
|||
} |
|||
} |
|||
|
|||
// Wait for the gap between tests, to synchronize with
|
|||
// the sender.
|
|||
// Specifically, wait for a signal followed by a gap of at last gap ms.
|
|||
void waitForGap(int gap) { |
|||
Serial.println("Waiting for gap"); |
|||
while (1) { |
|||
while (digitalRead(RECV_PIN) == LOW) { |
|||
} |
|||
unsigned long time = millis(); |
|||
while (digitalRead(RECV_PIN) == HIGH) { |
|||
if (millis() - time > gap) { |
|||
return; |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Dumps out the decode_results structure.
|
|||
// Call this after IRrecv::decode()
|
|||
void dump(decode_results *results) { |
|||
int count = results->rawlen; |
|||
if (results->decode_type == UNKNOWN) { |
|||
Serial.println("Could not decode message"); |
|||
} |
|||
else { |
|||
if (results->decode_type == NEC) { |
|||
Serial.print("Decoded NEC: "); |
|||
} |
|||
else if (results->decode_type == SONY) { |
|||
Serial.print("Decoded SONY: "); |
|||
} |
|||
else if (results->decode_type == RC5) { |
|||
Serial.print("Decoded RC5: "); |
|||
} |
|||
else if (results->decode_type == RC6) { |
|||
Serial.print("Decoded RC6: "); |
|||
} |
|||
Serial.print(results->value, HEX); |
|||
Serial.print(" ("); |
|||
Serial.print(results->bits, DEC); |
|||
Serial.println(" bits)"); |
|||
} |
|||
Serial.print("Raw ("); |
|||
Serial.print(count, DEC); |
|||
Serial.print("): "); |
|||
|
|||
for (int i = 0; i < count; i++) { |
|||
if ((i % 2) == 1) { |
|||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
else { |
|||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC); |
|||
} |
|||
Serial.print(" "); |
|||
} |
|||
Serial.println(""); |
|||
} |
|||
|
|||
|
|||
// Test send or receive.
|
|||
// If mode is SENDER, send a code of the specified type, value, and bits
|
|||
// If mode is RECEIVER, receive a code and verify that it is of the
|
|||
// specified type, value, and bits. For success, the LED is flashed;
|
|||
// for failure, the mode is set to ERROR.
|
|||
// The motivation behind this method is that the sender and the receiver
|
|||
// can do the same test calls, and the mode variable indicates whether
|
|||
// to send or receive.
|
|||
void test(char *label, int type, unsigned long value, int bits) { |
|||
if (mode == SENDER) { |
|||
Serial.println(label); |
|||
if (type == NEC) { |
|||
irsend.sendNEC(value, bits); |
|||
} |
|||
else if (type == SONY) { |
|||
irsend.sendSony(value, bits); |
|||
} |
|||
else if (type == RC5) { |
|||
irsend.sendRC5(value, bits); |
|||
} |
|||
else if (type == RC6) { |
|||
irsend.sendRC6(value, bits); |
|||
} |
|||
else { |
|||
Serial.print(label); |
|||
Serial.println("Bad type!"); |
|||
} |
|||
delay(200); |
|||
} |
|||
else if (mode == RECEIVER) { |
|||
irrecv.resume(); // Receive the next value
|
|||
unsigned long max_time = millis() + 30000; |
|||
Serial.print(label); |
|||
|
|||
// Wait for decode or timeout
|
|||
while (!irrecv.decode(&results)) { |
|||
if (millis() > max_time) { |
|||
Serial.println("Timeout receiving data"); |
|||
mode = ERROR; |
|||
return; |
|||
} |
|||
} |
|||
if (type == results.decode_type && value == results.value && bits == results.bits) { |
|||
Serial.println (": OK"); |
|||
digitalWrite(LED_PIN, HIGH); |
|||
delay(20); |
|||
digitalWrite(LED_PIN, LOW); |
|||
} |
|||
else { |
|||
Serial.println(": BAD"); |
|||
dump(&results); |
|||
mode = ERROR; |
|||
} |
|||
} |
|||
} |
|||
|
|||
// Test raw send or receive. This is similar to the test method,
|
|||
// except it send/receives raw data.
|
|||
void testRaw(char *label, unsigned int *rawbuf, int rawlen) { |
|||
if (mode == SENDER) { |
|||
Serial.println(label); |
|||
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */); |
|||
delay(200); |
|||
} |
|||
else if (mode == RECEIVER ) { |
|||
irrecv.resume(); // Receive the next value
|
|||
unsigned long max_time = millis() + 30000; |
|||
Serial.print(label); |
|||
|
|||
// Wait for decode or timeout
|
|||
while (!irrecv.decode(&results)) { |
|||
if (millis() > max_time) { |
|||
Serial.println("Timeout receiving data"); |
|||
mode = ERROR; |
|||
return; |
|||
} |
|||
} |
|||
|
|||
// Received length has extra first element for gap
|
|||
if (rawlen != results.rawlen - 1) { |
|||
Serial.print("Bad raw length "); |
|||
Serial.println(results.rawlen, DEC); |
|||
mode = ERROR; |
|||
return; |
|||
} |
|||
for (int i = 0; i < rawlen; i++) { |
|||
long got = results.rawbuf[i+1] * USECPERTICK; |
|||
// Adjust for extra duration of marks
|
|||
if (i % 2 == 0) { |
|||
got -= MARK_EXCESS; |
|||
} |
|||
else { |
|||
got += MARK_EXCESS; |
|||
} |
|||
// See if close enough, within 25%
|
|||
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) { |
|||
Serial.println(": BAD"); |
|||
dump(&results); |
|||
mode = ERROR; |
|||
return; |
|||
} |
|||
|
|||
} |
|||
Serial.println (": OK"); |
|||
digitalWrite(LED_PIN, HIGH); |
|||
delay(20); |
|||
digitalWrite(LED_PIN, LOW); |
|||
} |
|||
} |
|||
|
|||
// This is the raw data corresponding to NEC 0x12345678
|
|||
unsigned int sendbuf[] = { /* NEC format */ |
|||
9000, 4500, |
|||
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */ |
|||
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */ |
|||
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */ |
|||
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */ |
|||
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */ |
|||
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */ |
|||
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */ |
|||
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */ |
|||
560}; |
|||
|
|||
void loop() { |
|||
if (mode == SENDER) { |
|||
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
|
|||
} |
|||
else if (mode == RECEIVER) { |
|||
waitForGap(1000); |
|||
} |
|||
else if (mode == ERROR) { |
|||
// Light up for 5 seconds for error
|
|||
digitalWrite(LED_PIN, HIGH); |
|||
delay(5000); |
|||
digitalWrite(LED_PIN, LOW); |
|||
mode = RECEIVER; // Try again
|
|||
return; |
|||
} |
|||
|
|||
// The test suite.
|
|||
test("SONY1", SONY, 0x123, 12); |
|||
test("SONY2", SONY, 0x000, 12); |
|||
test("SONY3", SONY, 0xfff, 12); |
|||
test("SONY4", SONY, 0x12345, 20); |
|||
test("SONY5", SONY, 0x00000, 20); |
|||
test("SONY6", SONY, 0xfffff, 20); |
|||
test("NEC1", NEC, 0x12345678, 32); |
|||
test("NEC2", NEC, 0x00000000, 32); |
|||
test("NEC3", NEC, 0xffffffff, 32); |
|||
test("NEC4", NEC, REPEAT, 32); |
|||
test("RC51", RC5, 0x12345678, 32); |
|||
test("RC52", RC5, 0x0, 32); |
|||
test("RC53", RC5, 0xffffffff, 32); |
|||
test("RC61", RC6, 0x12345678, 32); |
|||
test("RC62", RC6, 0x0, 32); |
|||
test("RC63", RC6, 0xffffffff, 32); |
|||
|
|||
// Tests of raw sending and receiving.
|
|||
// First test sending raw and receiving raw.
|
|||
// Then test sending raw and receiving decoded NEC
|
|||
// Then test sending NEC and receiving raw
|
|||
testRaw("RAW1", sendbuf, 67); |
|||
if (mode == SENDER) { |
|||
testRaw("RAW2", sendbuf, 67); |
|||
test("RAW3", NEC, 0x12345678, 32); |
|||
} |
|||
else { |
|||
test("RAW2", NEC, 0x12345678, 32); |
|||
testRaw("RAW3", sendbuf, 67); |
|||
} |
|||
} |
@ -0,0 +1,29 @@ |
|||
/*
|
|||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend |
|||
* An IR LED must be connected to Arduino PWM pin 3. |
|||
* Version 0.1 July, 2009 |
|||
* Copyright 2009 Ken Shirriff |
|||
* http://arcfn.com
|
|||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post) |
|||
*/ |
|||
#include <IRremote.h> |
|||
|
|||
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
|
|||
#define PanasonicPower 0x100BCBD // Panasonic Power button
|
|||
|
|||
#define JVCPower 0xC5E8 |
|||
|
|||
IRsend irsend; |
|||
|
|||
void setup() |
|||
{ |
|||
} |
|||
|
|||
void loop() { |
|||
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
|
|||
|
|||
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
|
|||
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
|
|||
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
|
|||
delayMicroseconds(50); |
|||
} |
@ -0,0 +1,51 @@ |
|||
####################################### |
|||
# Syntax Coloring Map For IRremote |
|||
####################################### |
|||
|
|||
####################################### |
|||
# Datatypes (KEYWORD1) |
|||
####################################### |
|||
|
|||
decode_results KEYWORD1 |
|||
IRrecv KEYWORD1 |
|||
IRsend KEYWORD1 |
|||
|
|||
####################################### |
|||
# Methods and Functions (KEYWORD2) |
|||
####################################### |
|||
|
|||
blink13 KEYWORD2 |
|||
decode KEYWORD2 |
|||
enableIRIn KEYWORD2 |
|||
resume KEYWORD2 |
|||
enableIROut KEYWORD2 |
|||
sendNEC KEYWORD2 |
|||
sendSony KEYWORD2 |
|||
sendSanyo KEYWORD2 |
|||
sendMitsubishi KEYWORD2 |
|||
sendRaw KEYWORD2 |
|||
sendRC5 KEYWORD2 |
|||
sendRC6 KEYWORD2 |
|||
sendDISH KEYWORD2 |
|||
sendSharp KEYWORD2 |
|||
sendSharpRaw KEYWORD2 |
|||
sendPanasonic KEYWORD2 |
|||
sendJVC KEYWORD2 |
|||
|
|||
# |
|||
####################################### |
|||
# Constants (LITERAL1) |
|||
####################################### |
|||
|
|||
NEC LITERAL1 |
|||
SONY LITERAL1 |
|||
SANYO LITERAL1 |
|||
MITSUBISHI LITERAL1 |
|||
RC5 LITERAL1 |
|||
RC6 LITERAL1 |
|||
DISH LITERAL1 |
|||
SHARP LITERAL1 |
|||
PANASONIC LITERAL1 |
|||
JVC LITERAL1 |
|||
UNKNOWN LITERAL1 |
|||
REPEAT LITERAL1 |
@ -0,0 +1,14 @@ |
|||
This is the IRremote library for the Arduino. |
|||
|
|||
To download from github (http://github.com/shirriff/Arduino-IRremote), click on the "Downloads" link in the upper right, click "Download as zip", and get a zip file. Unzip it and rename the directory shirriff-Arduino-IRremote-nnn to IRremote |
|||
|
|||
To install, move the downloaded IRremote directory to: |
|||
arduino-1.x/libraries/IRremote |
|||
where arduino-1.x is your Arduino installation directory |
|||
|
|||
After installation you should have files such as: |
|||
arduino-1.x/libraries/IRremote/IRremote.cpp |
|||
|
|||
For details on the library see the Wiki on github or the blog post http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html |
|||
|
|||
Copyright 2009-2012 Ken Shirriff |
Binary file not shown.
@ -0,0 +1,63 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
/*
|
|||
LiquidCrystal Library - Hello World |
|||
|
|||
Demonstrates the use a 16x2 LCD display. The LiquidCrystal |
|||
library works with all LCD displays that are compatible with the |
|||
Hitachi HD44780 driver. There are many of them out there, and you |
|||
can usually tell them by the 16-pin interface. |
|||
|
|||
This sketch prints "Hello World!" to the LCD |
|||
and shows the time. |
|||
|
|||
The circuit: |
|||
* LCD RS pin to digital pin 7 |
|||
* LCD Enable pin to digital pin 8 |
|||
* LCD D4 pin to digital pin 9 |
|||
* LCD D5 pin to digital pin 10 |
|||
* LCD D6 pin to digital pin 11 |
|||
* LCD D7 pin to digital pin 12 |
|||
* LCD R/W pin to ground |
|||
* LCD VSS pin to ground |
|||
* LCD VCC pin to 5V |
|||
* 10K resistor: |
|||
* ends to +5V and ground |
|||
* wiper to LCD VO pin (pin 3) |
|||
|
|||
Library originally added 18 Apr 2008 |
|||
by David A. Mellis |
|||
library modified 5 Jul 2009 |
|||
by Limor Fried (http://www.ladyada.net)
|
|||
example added 9 Jul 2009 |
|||
by Tom Igoe |
|||
modified 22 Nov 2010 |
|||
by Tom Igoe |
|||
|
|||
This example code is in the public domain. |
|||
|
|||
http://www.arduino.cc/en/Tutorial/LiquidCrystal
|
|||
*/ |
|||
|
|||
// include the library code:
|
|||
#include <LiquidCrystal.h> |
|||
|
|||
// initialize the library with the numbers of the interface pins
|
|||
LiquidCrystal lcd(7, 8, 9, 10, 11, 12); |
|||
|
|||
void setup() { |
|||
// set up the LCD's number of columns and rows:
|
|||
lcd.begin(16, 2); |
|||
// Print a message to the LCD.
|
|||
lcd.print("Hello, World!"); |
|||
} |
|||
|
|||
void loop() { |
|||
// set the cursor to column 0, line 1
|
|||
// (note: line 1 is the second row, since counting begins with 0):
|
|||
lcd.setCursor(0, 1); |
|||
// print the number of seconds since reset:
|
|||
lcd.print(millis() / 1000); |
|||
} |
|||
|
Binary file not shown.
Binary file not shown.
@ -0,0 +1,36 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
#include <LiquidCrystal.h> |
|||
int tempPin = 0; |
|||
// BS E D4 D5 D6 D7
|
|||
LiquidCrystal lcd(7, 8, 9, 10, 11, 12); |
|||
void setup() |
|||
{ |
|||
lcd.begin(16, 2); |
|||
} |
|||
void loop() |
|||
{ |
|||
int tempReading = analogRead(tempPin); |
|||
// This is OK
|
|||
double tempK = log(10000.0 * ((1024.0 / tempReading - 1))); |
|||
tempK = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * tempK * tempK )) * tempK ); // Temp Kelvin
|
|||
float tempC = tempK - 273.15; // Convert Kelvin to Celcius
|
|||
float tempF = (tempC * 9.0)/ 5.0 + 32.0; // Convert Celcius to Fahrenheit
|
|||
/* replaced
|
|||
float tempVolts = tempReading * 5.0 / 1024.0; |
|||
float tempC = (tempVolts - 0.5) * 10.0; |
|||
float tempF = tempC * 9.0 / 5.0 + 32.0; |
|||
*/ |
|||
// Display Temperature in C
|
|||
lcd.setCursor(0, 0); |
|||
lcd.print("Temp C "); |
|||
// Display Temperature in F
|
|||
//lcd.print("Temp F ");
|
|||
lcd.setCursor(6, 0); |
|||
// Display Temperature in C
|
|||
lcd.print(tempC); |
|||
// Display Temperature in F
|
|||
//lcd.print(tempF);
|
|||
delay(500); |
|||
} |
@ -0,0 +1,37 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
int tDelay = 100; |
|||
int latchPin = 11; // (11) ST_CP [RCK] on 74HC595
|
|||
int clockPin = 9; // (9) SH_CP [SCK] on 74HC595
|
|||
int dataPin = 12; // (12) DS [S1] on 74HC595
|
|||
|
|||
byte leds = 0; |
|||
|
|||
void updateShiftRegister() |
|||
{ |
|||
digitalWrite(latchPin, LOW); |
|||
shiftOut(dataPin, clockPin, LSBFIRST, leds); |
|||
digitalWrite(latchPin, HIGH); |
|||
} |
|||
|
|||
void setup() |
|||
{ |
|||
pinMode(latchPin, OUTPUT); |
|||
pinMode(dataPin, OUTPUT); |
|||
pinMode(clockPin, OUTPUT); |
|||
} |
|||
|
|||
void loop() |
|||
{ |
|||
leds = 0; |
|||
updateShiftRegister(); |
|||
delay(tDelay); |
|||
for (int i = 0; i < 8; i++) |
|||
{ |
|||
bitSet(leds, i); |
|||
updateShiftRegister(); |
|||
delay(tDelay); |
|||
} |
|||
} |
|||
|
@ -0,0 +1,48 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
int latchPin = 11; |
|||
int clockPin = 9; |
|||
int dataPin = 12; |
|||
|
|||
byte leds = 0; |
|||
void updateShiftRegister() |
|||
{ |
|||
digitalWrite(latchPin, LOW); |
|||
shiftOut(dataPin, clockPin, LSBFIRST, leds); |
|||
digitalWrite(latchPin, HIGH); |
|||
} |
|||
void setup() |
|||
{ |
|||
pinMode(latchPin, OUTPUT); |
|||
pinMode(dataPin, OUTPUT); |
|||
pinMode(clockPin, OUTPUT); |
|||
updateShiftRegister(); |
|||
Serial.begin(9600); |
|||
while (! Serial); // Wait untilSerial is ready - Leonardo
|
|||
Serial.println("Enter LED Number 0 to 7 or 'x' to clear"); |
|||
} |
|||
|
|||
void loop() |
|||
{ |
|||
if (Serial.available()) |
|||
{ |
|||
char ch = Serial.read(); |
|||
if (ch >= '0' && ch <= '7') |
|||
{ |
|||
int led = ch - '0'; |
|||
bitSet(leds, led); |
|||
updateShiftRegister(); |
|||
Serial.print("Turned on LED "); |
|||
Serial.println(led); |
|||
} |
|||
if (ch == 'x') |
|||
{ |
|||
leds = 0; |
|||
updateShiftRegister(); |
|||
Serial.println("Cleared"); |
|||
} |
|||
} |
|||
} |
|||
|
|||
|
@ -0,0 +1,36 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.9
|
|||
|
|||
int lightPin = 0; |
|||
int latchPin = 11; |
|||
int clockPin = 9; |
|||
int dataPin = 12; |
|||
|
|||
int leds = 0; |
|||
|
|||
void setup() |
|||
{ |
|||
pinMode(latchPin, OUTPUT); |
|||
pinMode(dataPin, OUTPUT); |
|||
pinMode(clockPin, OUTPUT); |
|||
} |
|||
void updateShiftRegister() |
|||
{ |
|||
digitalWrite(latchPin, LOW); |
|||
shiftOut(dataPin, clockPin, LSBFIRST, leds); |
|||
digitalWrite(latchPin, HIGH); |
|||
} |
|||
void loop() |
|||
{ |
|||
int reading = analogRead(lightPin); |
|||
int numLEDSLit = reading / 57; //1023 / 9 / 2
|
|||
if (numLEDSLit > 8) numLEDSLit = 8; |
|||
leds = 0; // no LEDs lit to start
|
|||
for (int i = 0; i < numLEDSLit; i++) |
|||
{ |
|||
leds = leds + (1 << i); // sets the i'th bit
|
|||
} |
|||
updateShiftRegister(); |
|||
} |
|||
|
|||
|
@ -0,0 +1,55 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.12
|
|||
|
|||
// define the LED digit patterns, from 0 - 9
|
|||
// 1 = LED on, 0 = LED off, in this order:
|
|||
// 74HC595 pin Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7
|
|||
// Mapping to a,b,c,d,e,f,g of Seven-Segment LED
|
|||
byte seven_seg_digits[10] = { B11111100, // = 0
|
|||
B01100000, // = 1
|
|||
B11011010, // = 2
|
|||
B11110010, // = 3
|
|||
B01100110, // = 4
|
|||
B10110110, // = 5
|
|||
B10111110, // = 6
|
|||
B11100000, // = 7
|
|||
B11111110, // = 8
|
|||
B11100110 // = 9
|
|||
}; |
|||
|
|||
// connect to the ST_CP of 74HC595 (pin 3,latch pin)
|
|||
int latchPin = 3; |
|||
// connect to the SH_CP of 74HC595 (pin 4, clock pin)
|
|||
int clockPin = 4; |
|||
// connect to the DS of 74HC595 (pin 2)
|
|||
int dataPin = 2; |
|||
|
|||
void setup() { |
|||
// Set latchPin, clockPin, dataPin as output
|
|||
pinMode(latchPin, OUTPUT); |
|||
pinMode(clockPin, OUTPUT); |
|||
pinMode(dataPin, OUTPUT); |
|||
} |
|||
|
|||
// display a number on the digital segment display
|
|||
void sevenSegWrite(byte digit) { |
|||
// set the latchPin to low potential, before sending data
|
|||
digitalWrite(latchPin, LOW); |
|||
|
|||
// the original data (bit pattern)
|
|||
shiftOut(dataPin, clockPin, LSBFIRST, seven_seg_digits[digit]); |
|||
|
|||
// set the latchPin to high potential, after sending data
|
|||
digitalWrite(latchPin, HIGH); |
|||
} |
|||
|
|||
void loop() { |
|||
// count from 9 to 0
|
|||
for (byte digit = 10; digit > 0; --digit) { |
|||
delay(1000); |
|||
sevenSegWrite(digit - 1); |
|||
} |
|||
|
|||
// suspend 4 seconds
|
|||
delay(3000); |
|||
} |
@ -0,0 +1,56 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.12
|
|||
|
|||
int latch=9; //74HC595 pin 9 STCP
|
|||
int clock=10; //74HC595 pin 10 SHCP
|
|||
int data=8; //74HC595 pin 8 DS
|
|||
|
|||
unsigned char table[]= |
|||
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c |
|||
,0x39,0x5e,0x79,0x71,0x00}; |
|||
|
|||
void setup() { |
|||
pinMode(latch,OUTPUT); |
|||
pinMode(clock,OUTPUT); |
|||
pinMode(data,OUTPUT); |
|||
} |
|||
void Display(unsigned char num) |
|||
{ |
|||
|
|||
digitalWrite(latch,LOW); |
|||
shiftOut(data,clock,MSBFIRST,table[num]); |
|||
digitalWrite(latch,HIGH); |
|||
|
|||
} |
|||
void loop() { |
|||
Display(1); |
|||
delay(500); |
|||
Display(2); |
|||
delay(500); |
|||
Display(3); |
|||
delay(500); |
|||
Display(4); |
|||
delay(500); |
|||
Display(5); |
|||
delay(500); |
|||
Display(6); |
|||
delay(500); |
|||
Display(7); |
|||
delay(500); |
|||
Display(8); |
|||
delay(500); |
|||
Display(9); |
|||
delay(500); |
|||
Display(10); |
|||
delay(500); |
|||
Display(11); |
|||
delay(500); |
|||
Display(12); |
|||
delay(500); |
|||
Display(13); |
|||
delay(500); |
|||
Display(14); |
|||
delay(500); |
|||
Display(15); |
|||
delay(500); |
|||
} |
@ -0,0 +1,74 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.12
|
|||
|
|||
/************************
|
|||
Exercise the motor using |
|||
the L293D chip |
|||
************************/ |
|||
|
|||
#define ENABLE 5 |
|||
#define DIRA 3 |
|||
#define DIRB 4 |
|||
|
|||
int i; |
|||
|
|||
void setup() { |
|||
//---set pin direction
|
|||
pinMode(ENABLE,OUTPUT); |
|||
pinMode(DIRA,OUTPUT); |
|||
pinMode(DIRB,OUTPUT); |
|||
Serial.begin(9600); |
|||
} |
|||
|
|||
void loop() { |
|||
//---back and forth example
|
|||
Serial.println("One way, then reverse"); |
|||
digitalWrite(ENABLE,HIGH); // enable on
|
|||
for (i=0;i<5;i++) { |
|||
digitalWrite(DIRA,HIGH); //one way
|
|||
digitalWrite(DIRB,LOW); |
|||
delay(500); |
|||
digitalWrite(DIRA,LOW); //reverse
|
|||
digitalWrite(DIRB,HIGH); |
|||
delay(500); |
|||
} |
|||
digitalWrite(ENABLE,LOW); // disable
|
|||
delay(2000); |
|||
|
|||
Serial.println("fast Slow example"); |
|||
//---fast/slow stop example
|
|||
digitalWrite(ENABLE,HIGH); //enable on
|
|||
digitalWrite(DIRA,HIGH); //one way
|
|||
digitalWrite(DIRB,LOW); |
|||
delay(3000); |
|||
digitalWrite(ENABLE,LOW); //slow stop
|
|||
delay(1000); |
|||
digitalWrite(ENABLE,HIGH); //enable on
|
|||
digitalWrite(DIRA,LOW); //one way
|
|||
digitalWrite(DIRB,HIGH); |
|||
delay(3000); |
|||
digitalWrite(DIRA,LOW); //fast stop
|
|||
delay(2000); |
|||
|
|||
Serial.println("PWM full then slow"); |
|||
//---PWM example, full speed then slow
|
|||
analogWrite(ENABLE,255); //enable on
|
|||
digitalWrite(DIRA,HIGH); //one way
|
|||
digitalWrite(DIRB,LOW); |
|||
delay(2000); |
|||
analogWrite(ENABLE,180); //half speed
|
|||
delay(2000); |
|||
analogWrite(ENABLE,128); //half speed
|
|||
delay(2000); |
|||
analogWrite(ENABLE,50); //half speed
|
|||
delay(2000); |
|||
analogWrite(ENABLE,128); //half speed
|
|||
delay(2000); |
|||
analogWrite(ENABLE,180); //half speed
|
|||
delay(2000); |
|||
analogWrite(ENABLE,255); //half speed
|
|||
delay(2000); |
|||
digitalWrite(ENABLE,LOW); //all done
|
|||
delay(10000); |
|||
} |
|||
|
@ -0,0 +1,49 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.12
|
|||
|
|||
/************************
|
|||
Exercise the motor using |
|||
the L293D chip |
|||
************************/ |
|||
|
|||
#define ENABLE 5 |
|||
#define DIRA 3 |
|||
#define DIRB 4 |
|||
|
|||
int i; |
|||
|
|||
void setup() { |
|||
//---set pin direction
|
|||
pinMode(ENABLE,OUTPUT); |
|||
pinMode(DIRA,OUTPUT); |
|||
pinMode(DIRB,OUTPUT); |
|||
Serial.begin(9600); |
|||
} |
|||
|
|||
void loop() { |
|||
|
|||
//---back and forth example
|
|||
Serial.println("One way, then reverse"); |
|||
digitalWrite(ENABLE,HIGH); // enable on
|
|||
for (i=0;i<5;i++) { |
|||
digitalWrite(DIRA,HIGH); //one way
|
|||
digitalWrite(DIRB,LOW); |
|||
delay(750); |
|||
digitalWrite(DIRA,LOW); //reverse
|
|||
digitalWrite(DIRB,HIGH); |
|||
delay(750); |
|||
} |
|||
digitalWrite(ENABLE,LOW); // disable
|
|||
delay(3000); |
|||
for (i=0;i<5;i++) { |
|||
digitalWrite(DIRA,HIGH); //one way
|
|||
digitalWrite(DIRB,LOW); |
|||
delay(750); |
|||
digitalWrite(DIRA,LOW); //reverse
|
|||
digitalWrite(DIRB,HIGH); |
|||
delay(750); |
|||
} |
|||
digitalWrite(ENABLE,LOW); // disable
|
|||
delay(3000); |
|||
} |
|||
|
Binary file not shown.
@ -0,0 +1,40 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.12
|
|||
|
|||
/*
|
|||
Stepper Motor Control - one revolution |
|||
|
|||
This program drives a unipolar or bipolar stepper motor. |
|||
The motor is attached to digital pins 8 - 11 of the Arduino. |
|||
|
|||
The motor should revolve one revolution in one direction, then |
|||
one revolution in the other direction. |
|||
|
|||
*/ |
|||
|
|||
#include <Stepper.h> |
|||
|
|||
const int stepsPerRevolution = 1500; // change this to fit the number of steps per revolution
|
|||
|
|||
// initialize the stepper library on pins 8 through 11:
|
|||
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11); |
|||
|
|||
void setup() { |
|||
// set the speed at 20 rpm:
|
|||
myStepper.setSpeed(20); |
|||
// initialize the serial port:
|
|||
Serial.begin(9600); |
|||
} |
|||
|
|||
void loop() { |
|||
// step one revolution in one direction:
|
|||
Serial.println("clockwise"); |
|||
myStepper.step(stepsPerRevolution); |
|||
delay(500); |
|||
|
|||
// step one revolution in the other direction:
|
|||
Serial.println("counterclockwise"); |
|||
myStepper.step(-stepsPerRevolution); |
|||
delay(500); |
|||
} |
|||
|
Binary file not shown.
Binary file not shown.
@ -0,0 +1,58 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.12
|
|||
|
|||
#include "Stepper.h" |
|||
#include "IRremote.h" |
|||
|
|||
/*----- Variables, Pins -----*/ |
|||
#define STEPS 32 // Number of steps per revolution of Internal shaft
|
|||
int Steps2Take; // 2048 = 1 Revolution
|
|||
int receiver = 12; // Signal Pin of IR receiver to Arduino Digital Pin 6
|
|||
|
|||
/*-----( Declare objects )-----*/ |
|||
// Setup of proper sequencing for Motor Driver Pins
|
|||
// In1, In2, In3, In4 in the sequence 1-3-2-4
|
|||
|
|||
Stepper small_stepper(STEPS, 8, 10, 9, 11); |
|||
IRrecv irrecv(receiver); // create instance of 'irrecv'
|
|||
decode_results results; // create instance of 'decode_results'
|
|||
|
|||
void setup() |
|||
{ |
|||
irrecv.enableIRIn(); // Start the receiver
|
|||
} |
|||
|
|||
void loop() |
|||
{ |
|||
if (irrecv.decode(&results)) // have we received an IR signal?
|
|||
|
|||
{ |
|||
switch(results.value) |
|||
|
|||
{ |
|||
|
|||
case 0xFFA857: // VOL+ button pressed
|
|||
small_stepper.setSpeed(500); //Max seems to be 500
|
|||
Steps2Take = 2048; // Rotate CW
|
|||
small_stepper.step(Steps2Take); |
|||
delay(2000); |
|||
break; |
|||
|
|||
case 0xFF629D: // VOL- button pressed
|
|||
small_stepper.setSpeed(500); |
|||
Steps2Take = -2048; // Rotate CCW
|
|||
small_stepper.step(Steps2Take); |
|||
delay(2000); |
|||
break; |
|||
|
|||
} |
|||
|
|||
irrecv.resume(); // receive the next value
|
|||
digitalWrite(8, LOW); |
|||
digitalWrite(9, LOW); |
|||
digitalWrite(10, LOW); |
|||
digitalWrite(11, LOW); |
|||
} |
|||
|
|||
|
|||
}/* --end main loop -- */ |
@ -0,0 +1,83 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.8
|
|||
|
|||
// Define Pins
|
|||
#define BLUE 3 |
|||
#define GREEN 5 |
|||
#define RED 6 |
|||
|
|||
void setup() |
|||
{ |
|||
pinMode(RED, OUTPUT); |
|||
pinMode(GREEN, OUTPUT); |
|||
pinMode(BLUE, OUTPUT); |
|||
digitalWrite(RED, HIGH); |
|||
digitalWrite(GREEN, LOW); |
|||
digitalWrite(BLUE, LOW); |
|||
} |
|||
|
|||
// define variables
|
|||
int redValue; |
|||
int greenValue; |
|||
int blueValue; |
|||
|
|||
// main loop
|
|||
void loop() |
|||
{ |
|||
#define delayTime 10 // fading time between colors
|
|||
|
|||
redValue = 255; // choose a value between 1 and 255 to change the color.
|
|||
greenValue = 0; |
|||
blueValue = 0; |
|||
|
|||
// this is unnecessary as we've either turned on RED in SETUP
|
|||
// or in the previous loop ... regardless, this turns RED off
|
|||
// analogWrite(RED, 0);
|
|||
// delay(1000);
|
|||
|
|||
for(int i = 0; i < 255; i += 1) // fades out red bring green full when i=255
|
|||
{ |
|||
redValue -= 1; |
|||
greenValue += 1; |
|||
// The following was reversed, counting in the wrong directions
|
|||
// analogWrite(RED, 255 - redValue);
|
|||
// analogWrite(GREEN, 255 - greenValue);
|
|||
analogWrite(RED, redValue); |
|||
analogWrite(GREEN, greenValue); |
|||
delay(delayTime); |
|||
} |
|||
|
|||
redValue = 0; |
|||
greenValue = 255; |
|||
blueValue = 0; |
|||
|
|||
for(int i = 0; i < 255; i += 1) // fades out green bring blue full when i=255
|
|||
{ |
|||
greenValue -= 1; |
|||
blueValue += 1; |
|||
// The following was reversed, counting in the wrong directions
|
|||
// analogWrite(GREEN, 255 - greenValue);
|
|||
// analogWrite(BLUE, 255 - blueValue);
|
|||
analogWrite(GREEN, greenValue); |
|||
analogWrite(BLUE, blueValue); |
|||
delay(delayTime); |
|||
} |
|||
|
|||
redValue = 0; |
|||
greenValue = 0; |
|||
blueValue = 255; |
|||
|
|||
for(int i = 0; i < 255; i += 1) // fades out blue bring red full when i=255
|
|||
{ |
|||
// The following code has been rearranged to match the other two similar sections
|
|||
blueValue -= 1; |
|||
redValue += 1; |
|||
// The following was reversed, counting in the wrong directions
|
|||
// analogWrite(BLUE, 255 - blueValue);
|
|||
// analogWrite(RED, 255 - redValue);
|
|||
analogWrite(BLUE, blueValue); |
|||
analogWrite(RED, redValue); |
|||
delay(delayTime); |
|||
} |
|||
} |
|||
|
@ -0,0 +1,27 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.08
|
|||
|
|||
int ledPin = 5; |
|||
int buttonApin = 9; |
|||
int buttonBpin = 8; |
|||
|
|||
byte leds = 0; |
|||
|
|||
void setup() |
|||
{ |
|||
pinMode(ledPin, OUTPUT); |
|||
pinMode(buttonApin, INPUT_PULLUP); |
|||
pinMode(buttonBpin, INPUT_PULLUP); |
|||
} |
|||
|
|||
void loop() |
|||
{ |
|||
if (digitalRead(buttonApin) == LOW) |
|||
{ |
|||
digitalWrite(ledPin, HIGH); |
|||
} |
|||
if (digitalRead(buttonBpin) == LOW) |
|||
{ |
|||
digitalWrite(ledPin, LOW); |
|||
} |
|||
} |
@ -0,0 +1,31 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.08
|
|||
|
|||
int buzzer = 12;//the pin of the active buzzer
|
|||
void setup() |
|||
{ |
|||
pinMode(buzzer,OUTPUT);//initialize the buzzer pin as an output
|
|||
} |
|||
void loop() |
|||
{ |
|||
unsigned char i; |
|||
while(1) |
|||
{ |
|||
//output an frequency
|
|||
for(i=0;i<80;i++) |
|||
{ |
|||
digitalWrite(buzzer,HIGH); |
|||
delay(1);//wait for 1ms
|
|||
digitalWrite(buzzer,LOW); |
|||
delay(1);//wait for 1ms
|
|||
} |
|||
//output another frequency
|
|||
for(i=0;i<100;i++) |
|||
{ |
|||
digitalWrite(buzzer,HIGH); |
|||
delay(2);//wait for 2ms
|
|||
digitalWrite(buzzer,LOW); |
|||
delay(2);//wait for 2ms
|
|||
} |
|||
} |
|||
} |
@ -0,0 +1,26 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.08
|
|||
|
|||
#include "pitches.h" |
|||
|
|||
// notes in the melody:
|
|||
int melody[] = { |
|||
NOTE_C5, NOTE_D5, NOTE_E5, NOTE_F5, NOTE_G5, NOTE_A5, NOTE_B5, NOTE_C6}; |
|||
int duration = 500; // 500 miliseconds
|
|||
|
|||
void setup() { |
|||
|
|||
} |
|||
|
|||
void loop() { |
|||
for (int thisNote = 0; thisNote < 8; thisNote++) { |
|||
// pin8 output the voice, every scale is 0.5 sencond
|
|||
tone(8, melody[thisNote], duration); |
|||
|
|||
// Output the voice after several minutes
|
|||
delay(1000); |
|||
} |
|||
|
|||
// restart after two seconds
|
|||
delay(2000); |
|||
} |
Binary file not shown.
@ -0,0 +1,26 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.08
|
|||
/*****************************************/ |
|||
const int ledPin = 13;//the led attach to
|
|||
|
|||
void setup() |
|||
{ |
|||
pinMode(ledPin,OUTPUT);//initialize the ledPin as an output
|
|||
pinMode(2,INPUT); |
|||
digitalWrite(2, HIGH); |
|||
} |
|||
/******************************************/ |
|||
void loop() |
|||
{ |
|||
int digitalVal = digitalRead(2); |
|||
if(HIGH == digitalVal) |
|||
{ |
|||
digitalWrite(ledPin,LOW);//turn the led off
|
|||
} |
|||
else |
|||
{ |
|||
digitalWrite(ledPin,HIGH);//turn the led on
|
|||
} |
|||
} |
|||
/**********************************************/ |
|||
|
Binary file not shown.
@ -0,0 +1,25 @@ |
|||
= Servo Library for Arduino = |
|||
|
|||
This library allows an Arduino board to control RC (hobby) servo motors. |
|||
|
|||
For more information about this library please visit us at |
|||
http://www.arduino.cc/en/Reference/Servo |
|||
|
|||
== License == |
|||
|
|||
Copyright (c) 2013 Arduino LLC. All right reserved. |
|||
Copyright (c) 2009 Michael Margolis. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
@ -0,0 +1,27 @@ |
|||
/*
|
|||
Controlling a servo position using a potentiometer (variable resistor) |
|||
by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>
|
|||
|
|||
modified on 8 Nov 2013 |
|||
by Scott Fitzgerald |
|||
http://www.arduino.cc/en/Tutorial/Knob
|
|||
*/ |
|||
|
|||
#include <Servo.h> |
|||
|
|||
Servo myservo; // create servo object to control a servo
|
|||
|
|||
int potpin = 0; // analog pin used to connect the potentiometer
|
|||
int val; // variable to read the value from the analog pin
|
|||
|
|||
void setup() { |
|||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
|||
} |
|||
|
|||
void loop() { |
|||
val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)
|
|||
val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180)
|
|||
myservo.write(val); // sets the servo position according to the scaled value
|
|||
delay(15); // waits for the servo to get there
|
|||
} |
|||
|
@ -0,0 +1,32 @@ |
|||
/* Sweep
|
|||
by BARRAGAN <http://barraganstudio.com>
|
|||
This example code is in the public domain. |
|||
|
|||
modified 8 Nov 2013 |
|||
by Scott Fitzgerald |
|||
http://www.arduino.cc/en/Tutorial/Sweep
|
|||
*/ |
|||
|
|||
#include <Servo.h> |
|||
|
|||
Servo myservo; // create servo object to control a servo
|
|||
// twelve servo objects can be created on most boards
|
|||
|
|||
int pos = 0; // variable to store the servo position
|
|||
|
|||
void setup() { |
|||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
|||
} |
|||
|
|||
void loop() { |
|||
for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
|
|||
// in steps of 1 degree
|
|||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
|||
delay(15); // waits 15ms for the servo to reach the position
|
|||
} |
|||
for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
|
|||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
|||
delay(15); // waits 15ms for the servo to reach the position
|
|||
} |
|||
} |
|||
|
@ -0,0 +1,24 @@ |
|||
####################################### |
|||
# Syntax Coloring Map Servo |
|||
####################################### |
|||
|
|||
####################################### |
|||
# Datatypes (KEYWORD1) |
|||
####################################### |
|||
|
|||
Servo KEYWORD1 Servo |
|||
|
|||
####################################### |
|||
# Methods and Functions (KEYWORD2) |
|||
####################################### |
|||
attach KEYWORD2 |
|||
detach KEYWORD2 |
|||
write KEYWORD2 |
|||
read KEYWORD2 |
|||
attached KEYWORD2 |
|||
writeMicroseconds KEYWORD2 |
|||
readMicroseconds KEYWORD2 |
|||
|
|||
####################################### |
|||
# Constants (LITERAL1) |
|||
####################################### |
@ -0,0 +1,9 @@ |
|||
name=Servo |
|||
version=1.1.2 |
|||
author=Michael Margolis, Arduino |
|||
maintainer=Arduino <info@arduino.cc> |
|||
sentence=Allows Arduino/Genuino boards to control a variety of servo motors. |
|||
paragraph=This library can control a great number of servos.<br />It makes careful use of timers: the library can control 12 servos using only 1 timer.<br />On the Arduino Due you can control up to 60 servos.<br /> |
|||
category=Device Control |
|||
url=http://www.arduino.cc/en/Reference/Servo |
|||
architectures=avr,sam,samd |
@ -0,0 +1,112 @@ |
|||
/*
|
|||
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 |
|||
Copyright (c) 2009 Michael Margolis. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
/*
|
|||
A servo is activated by creating an instance of the Servo class passing |
|||
the desired pin to the attach() method. |
|||
The servos are pulsed in the background using the value most recently |
|||
written using the write() method. |
|||
|
|||
Note that analogWrite of PWM on pins associated with the timer are |
|||
disabled when the first servo is attached. |
|||
Timers are seized as needed in groups of 12 servos - 24 servos use two |
|||
timers, 48 servos will use four. |
|||
The sequence used to sieze timers is defined in timers.h |
|||
|
|||
The methods are: |
|||
|
|||
Servo - Class for manipulating servo motors connected to Arduino pins. |
|||
|
|||
attach(pin ) - Attaches a servo motor to an i/o pin. |
|||
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds |
|||
default min is 544, max is 2400 |
|||
|
|||
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds) |
|||
writeMicroseconds() - Sets the servo pulse width in microseconds |
|||
read() - Gets the last written servo pulse width as an angle between 0 and 180. |
|||
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release) |
|||
attached() - Returns true if there is a servo attached. |
|||
detach() - Stops an attached servos from pulsing its i/o pin. |
|||
*/ |
|||
|
|||
#ifndef Servo_h |
|||
#define Servo_h |
|||
|
|||
#include <inttypes.h> |
|||
|
|||
/*
|
|||
* Defines for 16 bit timers used with Servo library |
|||
* |
|||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board |
|||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated |
|||
* _Nbr_16timers indicates how many 16 bit timers are available. |
|||
*/ |
|||
|
|||
// Architecture specific include
|
|||
#if defined(ARDUINO_ARCH_AVR) |
|||
#include "avr/ServoTimers.h" |
|||
#elif defined(ARDUINO_ARCH_SAM) |
|||
#include "sam/ServoTimers.h" |
|||
#elif defined(ARDUINO_ARCH_SAMD) |
|||
#include "samd/ServoTimers.h" |
|||
#else |
|||
#error "This library only supports boards with an AVR, SAM or SAMD processor." |
|||
#endif |
|||
|
|||
#define Servo_VERSION 2 // software version of this library
|
|||
|
|||
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
|
|||
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
|
|||
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
|
|||
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
|
|||
|
|||
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
|
|||
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER) |
|||
|
|||
#define INVALID_SERVO 255 // flag indicating an invalid servo index
|
|||
|
|||
typedef struct { |
|||
uint8_t nbr :6 ; // a pin number from 0 to 63
|
|||
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
|
|||
} ServoPin_t ; |
|||
|
|||
typedef struct { |
|||
ServoPin_t Pin; |
|||
volatile unsigned int ticks; |
|||
} servo_t; |
|||
|
|||
class Servo |
|||
{ |
|||
public: |
|||
Servo(); |
|||
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
|
|||
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
|
|||
void detach(); |
|||
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
|
|||
void writeMicroseconds(int value); // Write pulse width in microseconds
|
|||
int read(); // returns current pulse width as an angle between 0 and 180 degrees
|
|||
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
|
|||
bool attached(); // return true if this servo is attached, otherwise false
|
|||
private: |
|||
uint8_t servoIndex; // index into the channel data for this servo
|
|||
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
|
|||
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
|
|||
}; |
|||
|
|||
#endif |
@ -0,0 +1,317 @@ |
|||
/*
|
|||
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 |
|||
Copyright (c) 2009 Michael Margolis. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
#if defined(ARDUINO_ARCH_AVR) |
|||
|
|||
#include <avr/interrupt.h> |
|||
#include <Arduino.h> |
|||
|
|||
#include "Servo.h" |
|||
|
|||
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
|
|||
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
|
|||
|
|||
|
|||
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
|
|||
|
|||
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
|
|||
|
|||
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
|||
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
|
|||
|
|||
uint8_t ServoCount = 0; // the total number of attached servos
|
|||
|
|||
|
|||
// convenience macros
|
|||
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
|||
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
|||
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
|||
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
|||
|
|||
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
|||
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
|||
|
|||
/************ static functions common to all instances ***********************/ |
|||
|
|||
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA) |
|||
{ |
|||
if( Channel[timer] < 0 ) |
|||
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
|
|||
else{ |
|||
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true ) |
|||
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
|
|||
} |
|||
|
|||
Channel[timer]++; // increment to the next channel
|
|||
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) { |
|||
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks; |
|||
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
|
|||
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
|
|||
} |
|||
else { |
|||
// finished all channels so wait for the refresh period to expire before starting over
|
|||
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
|
|||
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL); |
|||
else |
|||
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
|
|||
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
|||
} |
|||
} |
|||
|
|||
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
|
|||
// Interrupt handlers for Arduino
|
|||
#if defined(_useTimer1) |
|||
SIGNAL (TIMER1_COMPA_vect) |
|||
{ |
|||
handle_interrupts(_timer1, &TCNT1, &OCR1A); |
|||
} |
|||
#endif |
|||
|
|||
#if defined(_useTimer3) |
|||
SIGNAL (TIMER3_COMPA_vect) |
|||
{ |
|||
handle_interrupts(_timer3, &TCNT3, &OCR3A); |
|||
} |
|||
#endif |
|||
|
|||
#if defined(_useTimer4) |
|||
SIGNAL (TIMER4_COMPA_vect) |
|||
{ |
|||
handle_interrupts(_timer4, &TCNT4, &OCR4A); |
|||
} |
|||
#endif |
|||
|
|||
#if defined(_useTimer5) |
|||
SIGNAL (TIMER5_COMPA_vect) |
|||
{ |
|||
handle_interrupts(_timer5, &TCNT5, &OCR5A); |
|||
} |
|||
#endif |
|||
|
|||
#elif defined WIRING |
|||
// Interrupt handlers for Wiring
|
|||
#if defined(_useTimer1) |
|||
void Timer1Service() |
|||
{ |
|||
handle_interrupts(_timer1, &TCNT1, &OCR1A); |
|||
} |
|||
#endif |
|||
#if defined(_useTimer3) |
|||
void Timer3Service() |
|||
{ |
|||
handle_interrupts(_timer3, &TCNT3, &OCR3A); |
|||
} |
|||
#endif |
|||
#endif |
|||
|
|||
|
|||
static void initISR(timer16_Sequence_t timer) |
|||
{ |
|||
#if defined (_useTimer1) |
|||
if(timer == _timer1) { |
|||
TCCR1A = 0; // normal counting mode
|
|||
TCCR1B = _BV(CS11); // set prescaler of 8
|
|||
TCNT1 = 0; // clear the timer count
|
|||
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) |
|||
TIFR |= _BV(OCF1A); // clear any pending interrupts;
|
|||
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
|
|||
#else |
|||
// here if not ATmega8 or ATmega128
|
|||
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
|
|||
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
|
|||
#endif |
|||
#if defined(WIRING) |
|||
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service); |
|||
#endif |
|||
} |
|||
#endif |
|||
|
|||
#if defined (_useTimer3) |
|||
if(timer == _timer3) { |
|||
TCCR3A = 0; // normal counting mode
|
|||
TCCR3B = _BV(CS31); // set prescaler of 8
|
|||
TCNT3 = 0; // clear the timer count
|
|||
#if defined(__AVR_ATmega128__) |
|||
TIFR |= _BV(OCF3A); // clear any pending interrupts;
|
|||
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
|
|||
#else |
|||
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
|
|||
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
|
|||
#endif |
|||
#if defined(WIRING) |
|||
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
|
|||
#endif |
|||
} |
|||
#endif |
|||
|
|||
#if defined (_useTimer4) |
|||
if(timer == _timer4) { |
|||
TCCR4A = 0; // normal counting mode
|
|||
TCCR4B = _BV(CS41); // set prescaler of 8
|
|||
TCNT4 = 0; // clear the timer count
|
|||
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
|
|||
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
|
|||
} |
|||
#endif |
|||
|
|||
#if defined (_useTimer5) |
|||
if(timer == _timer5) { |
|||
TCCR5A = 0; // normal counting mode
|
|||
TCCR5B = _BV(CS51); // set prescaler of 8
|
|||
TCNT5 = 0; // clear the timer count
|
|||
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
|
|||
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
|
|||
} |
|||
#endif |
|||
} |
|||
|
|||
static void finISR(timer16_Sequence_t timer) |
|||
{ |
|||
//disable use of the given timer
|
|||
#if defined WIRING // Wiring
|
|||
if(timer == _timer1) { |
|||
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) |
|||
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
|
|||
#else |
|||
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
|
|||
#endif |
|||
timerDetach(TIMER1OUTCOMPAREA_INT); |
|||
} |
|||
else if(timer == _timer3) { |
|||
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) |
|||
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
|
|||
#else |
|||
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
|
|||
#endif |
|||
timerDetach(TIMER3OUTCOMPAREA_INT); |
|||
} |
|||
#else |
|||
//For arduino - in future: call here to a currently undefined function to reset the timer
|
|||
#endif |
|||
} |
|||
|
|||
static boolean isTimerActive(timer16_Sequence_t timer) |
|||
{ |
|||
// returns true if any servo is active on this timer
|
|||
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { |
|||
if(SERVO(timer,channel).Pin.isActive == true) |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
|
|||
/****************** end of static functions ******************************/ |
|||
|
|||
Servo::Servo() |
|||
{ |
|||
if( ServoCount < MAX_SERVOS) { |
|||
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
|||
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
|
|||
} |
|||
else |
|||
this->servoIndex = INVALID_SERVO ; // too many servos
|
|||
} |
|||
|
|||
uint8_t Servo::attach(int pin) |
|||
{ |
|||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); |
|||
} |
|||
|
|||
uint8_t Servo::attach(int pin, int min, int max) |
|||
{ |
|||
if(this->servoIndex < MAX_SERVOS ) { |
|||
pinMode( pin, OUTPUT) ; // set servo pin to output
|
|||
servos[this->servoIndex].Pin.nbr = pin; |
|||
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
|||
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
|||
this->max = (MAX_PULSE_WIDTH - max)/4; |
|||
// initialize the timer if it has not already been initialized
|
|||
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); |
|||
if(isTimerActive(timer) == false) |
|||
initISR(timer); |
|||
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
|||
} |
|||
return this->servoIndex ; |
|||
} |
|||
|
|||
void Servo::detach() |
|||
{ |
|||
servos[this->servoIndex].Pin.isActive = false; |
|||
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); |
|||
if(isTimerActive(timer) == false) { |
|||
finISR(timer); |
|||
} |
|||
} |
|||
|
|||
void Servo::write(int value) |
|||
{ |
|||
if(value < MIN_PULSE_WIDTH) |
|||
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
|||
if(value < 0) value = 0; |
|||
if(value > 180) value = 180; |
|||
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); |
|||
} |
|||
this->writeMicroseconds(value); |
|||
} |
|||
|
|||
void Servo::writeMicroseconds(int value) |
|||
{ |
|||
// calculate and store the values for the given channel
|
|||
byte channel = this->servoIndex; |
|||
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
|||
{ |
|||
if( value < SERVO_MIN() ) // ensure pulse width is valid
|
|||
value = SERVO_MIN(); |
|||
else if( value > SERVO_MAX() ) |
|||
value = SERVO_MAX(); |
|||
|
|||
value = value - TRIM_DURATION; |
|||
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
|
|||
|
|||
uint8_t oldSREG = SREG; |
|||
cli(); |
|||
servos[channel].ticks = value; |
|||
SREG = oldSREG; |
|||
} |
|||
} |
|||
|
|||
int Servo::read() // return the value as degrees
|
|||
{ |
|||
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); |
|||
} |
|||
|
|||
int Servo::readMicroseconds() |
|||
{ |
|||
unsigned int pulsewidth; |
|||
if( this->servoIndex != INVALID_SERVO ) |
|||
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
|
|||
else |
|||
pulsewidth = 0; |
|||
|
|||
return pulsewidth; |
|||
} |
|||
|
|||
bool Servo::attached() |
|||
{ |
|||
return servos[this->servoIndex].Pin.isActive ; |
|||
} |
|||
|
|||
#endif // ARDUINO_ARCH_AVR
|
|||
|
@ -0,0 +1,59 @@ |
|||
/*
|
|||
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2 |
|||
Copyright (c) 2009 Michael Margolis. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
/*
|
|||
* Defines for 16 bit timers used with Servo library |
|||
* |
|||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board |
|||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated |
|||
* _Nbr_16timers indicates how many 16 bit timers are available. |
|||
*/ |
|||
|
|||
/**
|
|||
* AVR Only definitions |
|||
* -------------------- |
|||
*/ |
|||
|
|||
// Say which 16 bit timers can be used and in what order
|
|||
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) |
|||
#define _useTimer5 |
|||
#define _useTimer1 |
|||
#define _useTimer3 |
|||
#define _useTimer4 |
|||
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t; |
|||
|
|||
#elif defined(__AVR_ATmega32U4__) |
|||
#define _useTimer1 |
|||
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t; |
|||
|
|||
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) |
|||
#define _useTimer3 |
|||
#define _useTimer1 |
|||
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t; |
|||
|
|||
#elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__) |
|||
#define _useTimer3 |
|||
#define _useTimer1 |
|||
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t; |
|||
|
|||
#else // everything else
|
|||
#define _useTimer1 |
|||
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t; |
|||
#endif |
|||
|
@ -0,0 +1,283 @@ |
|||
/*
|
|||
Copyright (c) 2013 Arduino LLC. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
#if defined(ARDUINO_ARCH_SAM) |
|||
|
|||
#include <Arduino.h> |
|||
#include <Servo.h> |
|||
|
|||
#define usToTicks(_us) (( clockCyclesPerMicrosecond() * _us) / 32) // converts microseconds to tick
|
|||
#define ticksToUs(_ticks) (( (unsigned)_ticks * 32)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
|
|||
|
|||
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
|
|||
|
|||
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
|||
|
|||
uint8_t ServoCount = 0; // the total number of attached servos
|
|||
|
|||
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
|
|||
|
|||
// convenience macros
|
|||
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
|||
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
|||
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
|||
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
|||
|
|||
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
|||
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
|||
|
|||
/************ static functions common to all instances ***********************/ |
|||
|
|||
//------------------------------------------------------------------------------
|
|||
/// Interrupt handler for the TC0 channel 1.
|
|||
//------------------------------------------------------------------------------
|
|||
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel); |
|||
#if defined (_useTimer1) |
|||
void HANDLER_FOR_TIMER1(void) { |
|||
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); |
|||
} |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
void HANDLER_FOR_TIMER2(void) { |
|||
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2); |
|||
} |
|||
#endif |
|||
#if defined (_useTimer3) |
|||
void HANDLER_FOR_TIMER3(void) { |
|||
Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3); |
|||
} |
|||
#endif |
|||
#if defined (_useTimer4) |
|||
void HANDLER_FOR_TIMER4(void) { |
|||
Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4); |
|||
} |
|||
#endif |
|||
#if defined (_useTimer5) |
|||
void HANDLER_FOR_TIMER5(void) { |
|||
Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); |
|||
} |
|||
#endif |
|||
|
|||
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel) |
|||
{ |
|||
// clear interrupt
|
|||
tc->TC_CHANNEL[channel].TC_SR; |
|||
if (Channel[timer] < 0) { |
|||
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer
|
|||
} else { |
|||
if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true) { |
|||
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
|
|||
} |
|||
} |
|||
|
|||
Channel[timer]++; // increment to the next channel
|
|||
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) { |
|||
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks; |
|||
if(SERVO(timer,Channel[timer]).Pin.isActive == true) { // check if activated
|
|||
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
|
|||
} |
|||
} |
|||
else { |
|||
// finished all channels so wait for the refresh period to expire before starting over
|
|||
if( (tc->TC_CHANNEL[channel].TC_CV) + 4 < usToTicks(REFRESH_INTERVAL) ) { // allow a few ticks to ensure the next OCR1A not missed
|
|||
tc->TC_CHANNEL[channel].TC_RA = (unsigned int)usToTicks(REFRESH_INTERVAL); |
|||
} |
|||
else { |
|||
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed
|
|||
} |
|||
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
|||
} |
|||
} |
|||
|
|||
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn) |
|||
{ |
|||
pmc_enable_periph_clk(id); |
|||
TC_Configure(tc, channel, |
|||
TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32
|
|||
TC_CMR_WAVE | // Waveform mode
|
|||
TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC
|
|||
|
|||
/* 84MHz, MCK/32, for 1.5ms: 3937 */ |
|||
TC_SetRA(tc, channel, 2625); // 1ms
|
|||
|
|||
/* Configure and enable interrupt */ |
|||
NVIC_EnableIRQ(irqn); |
|||
// TC_IER_CPAS: RA Compare
|
|||
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS; |
|||
|
|||
// Enables the timer clock and performs a software reset to start the counting
|
|||
TC_Start(tc, channel); |
|||
} |
|||
|
|||
static void initISR(timer16_Sequence_t timer) |
|||
{ |
|||
#if defined (_useTimer1) |
|||
if (timer == _timer1) |
|||
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1); |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
if (timer == _timer2) |
|||
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2); |
|||
#endif |
|||
#if defined (_useTimer3) |
|||
if (timer == _timer3) |
|||
_initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3); |
|||
#endif |
|||
#if defined (_useTimer4) |
|||
if (timer == _timer4) |
|||
_initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4); |
|||
#endif |
|||
#if defined (_useTimer5) |
|||
if (timer == _timer5) |
|||
_initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5); |
|||
#endif |
|||
} |
|||
|
|||
static void finISR(timer16_Sequence_t timer) |
|||
{ |
|||
#if defined (_useTimer1) |
|||
TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2); |
|||
#endif |
|||
#if defined (_useTimer3) |
|||
TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3); |
|||
#endif |
|||
#if defined (_useTimer4) |
|||
TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4); |
|||
#endif |
|||
#if defined (_useTimer5) |
|||
TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); |
|||
#endif |
|||
} |
|||
|
|||
|
|||
static boolean isTimerActive(timer16_Sequence_t timer) |
|||
{ |
|||
// returns true if any servo is active on this timer
|
|||
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { |
|||
if(SERVO(timer,channel).Pin.isActive == true) |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
/****************** end of static functions ******************************/ |
|||
|
|||
Servo::Servo() |
|||
{ |
|||
if (ServoCount < MAX_SERVOS) { |
|||
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
|||
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
|
|||
} else { |
|||
this->servoIndex = INVALID_SERVO; // too many servos
|
|||
} |
|||
} |
|||
|
|||
uint8_t Servo::attach(int pin) |
|||
{ |
|||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); |
|||
} |
|||
|
|||
uint8_t Servo::attach(int pin, int min, int max) |
|||
{ |
|||
timer16_Sequence_t timer; |
|||
|
|||
if (this->servoIndex < MAX_SERVOS) { |
|||
pinMode(pin, OUTPUT); // set servo pin to output
|
|||
servos[this->servoIndex].Pin.nbr = pin; |
|||
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
|||
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
|||
this->max = (MAX_PULSE_WIDTH - max)/4; |
|||
// initialize the timer if it has not already been initialized
|
|||
timer = SERVO_INDEX_TO_TIMER(servoIndex); |
|||
if (isTimerActive(timer) == false) { |
|||
initISR(timer); |
|||
} |
|||
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
|||
} |
|||
return this->servoIndex; |
|||
} |
|||
|
|||
void Servo::detach() |
|||
{ |
|||
timer16_Sequence_t timer; |
|||
|
|||
servos[this->servoIndex].Pin.isActive = false; |
|||
timer = SERVO_INDEX_TO_TIMER(servoIndex); |
|||
if(isTimerActive(timer) == false) { |
|||
finISR(timer); |
|||
} |
|||
} |
|||
|
|||
void Servo::write(int value) |
|||
{ |
|||
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
|||
if (value < MIN_PULSE_WIDTH) |
|||
{ |
|||
if (value < 0) |
|||
value = 0; |
|||
else if (value > 180) |
|||
value = 180; |
|||
|
|||
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); |
|||
} |
|||
writeMicroseconds(value); |
|||
} |
|||
|
|||
void Servo::writeMicroseconds(int value) |
|||
{ |
|||
// calculate and store the values for the given channel
|
|||
byte channel = this->servoIndex; |
|||
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
|||
{ |
|||
if (value < SERVO_MIN()) // ensure pulse width is valid
|
|||
value = SERVO_MIN(); |
|||
else if (value > SERVO_MAX()) |
|||
value = SERVO_MAX(); |
|||
|
|||
value = value - TRIM_DURATION; |
|||
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
|
|||
servos[channel].ticks = value; |
|||
} |
|||
} |
|||
|
|||
int Servo::read() // return the value as degrees
|
|||
{ |
|||
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); |
|||
} |
|||
|
|||
int Servo::readMicroseconds() |
|||
{ |
|||
unsigned int pulsewidth; |
|||
if (this->servoIndex != INVALID_SERVO) |
|||
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION; |
|||
else |
|||
pulsewidth = 0; |
|||
|
|||
return pulsewidth; |
|||
} |
|||
|
|||
bool Servo::attached() |
|||
{ |
|||
return servos[this->servoIndex].Pin.isActive; |
|||
} |
|||
|
|||
#endif // ARDUINO_ARCH_SAM
|
|||
|
@ -0,0 +1,88 @@ |
|||
/*
|
|||
Copyright (c) 2013 Arduino LLC. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
/*
|
|||
* Defines for 16 bit timers used with Servo library |
|||
* |
|||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board |
|||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated |
|||
* _Nbr_16timers indicates how many 16 bit timers are available. |
|||
*/ |
|||
|
|||
/**
|
|||
* SAM Only definitions |
|||
* -------------------- |
|||
*/ |
|||
|
|||
// For SAM3X:
|
|||
#define _useTimer1 |
|||
#define _useTimer2 |
|||
#define _useTimer3 |
|||
#define _useTimer4 |
|||
#define _useTimer5 |
|||
|
|||
/*
|
|||
TC0, chan 0 => TC0_Handler |
|||
TC0, chan 1 => TC1_Handler |
|||
TC0, chan 2 => TC2_Handler |
|||
TC1, chan 0 => TC3_Handler |
|||
TC1, chan 1 => TC4_Handler |
|||
TC1, chan 2 => TC5_Handler |
|||
TC2, chan 0 => TC6_Handler |
|||
TC2, chan 1 => TC7_Handler |
|||
TC2, chan 2 => TC8_Handler |
|||
*/ |
|||
|
|||
#if defined (_useTimer1) |
|||
#define TC_FOR_TIMER1 TC1 |
|||
#define CHANNEL_FOR_TIMER1 0 |
|||
#define ID_TC_FOR_TIMER1 ID_TC3 |
|||
#define IRQn_FOR_TIMER1 TC3_IRQn |
|||
#define HANDLER_FOR_TIMER1 TC3_Handler |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
#define TC_FOR_TIMER2 TC1 |
|||
#define CHANNEL_FOR_TIMER2 1 |
|||
#define ID_TC_FOR_TIMER2 ID_TC4 |
|||
#define IRQn_FOR_TIMER2 TC4_IRQn |
|||
#define HANDLER_FOR_TIMER2 TC4_Handler |
|||
#endif |
|||
#if defined (_useTimer3) |
|||
#define TC_FOR_TIMER3 TC1 |
|||
#define CHANNEL_FOR_TIMER3 2 |
|||
#define ID_TC_FOR_TIMER3 ID_TC5 |
|||
#define IRQn_FOR_TIMER3 TC5_IRQn |
|||
#define HANDLER_FOR_TIMER3 TC5_Handler |
|||
#endif |
|||
#if defined (_useTimer4) |
|||
#define TC_FOR_TIMER4 TC0 |
|||
#define CHANNEL_FOR_TIMER4 2 |
|||
#define ID_TC_FOR_TIMER4 ID_TC2 |
|||
#define IRQn_FOR_TIMER4 TC2_IRQn |
|||
#define HANDLER_FOR_TIMER4 TC2_Handler |
|||
#endif |
|||
#if defined (_useTimer5) |
|||
#define TC_FOR_TIMER5 TC0 |
|||
#define CHANNEL_FOR_TIMER5 0 |
|||
#define ID_TC_FOR_TIMER5 ID_TC0 |
|||
#define IRQn_FOR_TIMER5 TC0_IRQn |
|||
#define HANDLER_FOR_TIMER5 TC0_Handler |
|||
#endif |
|||
|
|||
typedef enum { _timer1, _timer2, _timer3, _timer4, _timer5, _Nbr_16timers } timer16_Sequence_t ; |
|||
|
@ -0,0 +1,297 @@ |
|||
/*
|
|||
Copyright (c) 2015 Arduino LLC. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
#if defined(ARDUINO_ARCH_SAMD) |
|||
|
|||
#include <Arduino.h> |
|||
#include <Servo.h> |
|||
|
|||
#define usToTicks(_us) ((clockCyclesPerMicrosecond() * _us) / 16) // converts microseconds to tick
|
|||
#define ticksToUs(_ticks) (((unsigned) _ticks * 16) / clockCyclesPerMicrosecond()) // converts from ticks back to microseconds
|
|||
|
|||
#define TRIM_DURATION 5 // compensation ticks to trim adjust for digitalWrite delays
|
|||
|
|||
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
|||
|
|||
uint8_t ServoCount = 0; // the total number of attached servos
|
|||
|
|||
static volatile int8_t currentServoIndex[_Nbr_16timers]; // index for the servo being pulsed for each timer (or -1 if refresh interval)
|
|||
|
|||
// convenience macros
|
|||
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
|||
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
|||
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
|||
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
|||
|
|||
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
|||
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
|||
|
|||
#define WAIT_TC16_REGS_SYNC(x) while(x->COUNT16.STATUS.bit.SYNCBUSY); |
|||
|
|||
/************ static functions common to all instances ***********************/ |
|||
|
|||
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel, uint8_t intFlag); |
|||
#if defined (_useTimer1) |
|||
void HANDLER_FOR_TIMER1(void) { |
|||
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, INTFLAG_BIT_FOR_TIMER_1); |
|||
} |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
void HANDLER_FOR_TIMER2(void) { |
|||
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, INTFLAG_BIT_FOR_TIMER_2); |
|||
} |
|||
#endif |
|||
|
|||
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel, uint8_t intFlag) |
|||
{ |
|||
if (currentServoIndex[timer] < 0) { |
|||
tc->COUNT16.COUNT.reg = (uint16_t) 0; |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
} else { |
|||
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) { |
|||
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, LOW); // pulse this channel low if activated
|
|||
} |
|||
} |
|||
|
|||
// Select the next servo controlled by this timer
|
|||
currentServoIndex[timer]++; |
|||
|
|||
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && currentServoIndex[timer] < SERVOS_PER_TIMER) { |
|||
if (SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) { // check if activated
|
|||
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
|
|||
} |
|||
|
|||
// Get the counter value
|
|||
uint16_t tcCounterValue = tc->COUNT16.COUNT.reg; |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
|
|||
tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + SERVO(timer, currentServoIndex[timer]).ticks); |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
} |
|||
else { |
|||
// finished all channels so wait for the refresh period to expire before starting over
|
|||
|
|||
// Get the counter value
|
|||
uint16_t tcCounterValue = tc->COUNT16.COUNT.reg; |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
|
|||
if (tcCounterValue + 4UL < usToTicks(REFRESH_INTERVAL)) { // allow a few ticks to ensure the next OCR1A not missed
|
|||
tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(REFRESH_INTERVAL); |
|||
} |
|||
else { |
|||
tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + 4UL); // at least REFRESH_INTERVAL has elapsed
|
|||
} |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
|
|||
currentServoIndex[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
|||
} |
|||
|
|||
// Clear the interrupt
|
|||
tc->COUNT16.INTFLAG.reg = intFlag; |
|||
} |
|||
|
|||
static inline void resetTC (Tc* TCx) |
|||
{ |
|||
// Disable TCx
|
|||
TCx->COUNT16.CTRLA.reg &= ~TC_CTRLA_ENABLE; |
|||
WAIT_TC16_REGS_SYNC(TCx) |
|||
|
|||
// Reset TCx
|
|||
TCx->COUNT16.CTRLA.reg = TC_CTRLA_SWRST; |
|||
WAIT_TC16_REGS_SYNC(TCx) |
|||
while (TCx->COUNT16.CTRLA.bit.SWRST); |
|||
} |
|||
|
|||
static void _initISR(Tc *tc, uint8_t channel, uint32_t id, IRQn_Type irqn, uint8_t gcmForTimer, uint8_t intEnableBit) |
|||
{ |
|||
// Enable GCLK for timer 1 (timer counter input clock)
|
|||
GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(gcmForTimer)); |
|||
while (GCLK->STATUS.bit.SYNCBUSY); |
|||
|
|||
// Reset the timer
|
|||
// TODO this is not the right thing to do if more than one channel per timer is used by the Servo library
|
|||
resetTC(tc); |
|||
|
|||
// Set timer counter mode to 16 bits
|
|||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16; |
|||
|
|||
// Set timer counter mode as normal PWM
|
|||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_NPWM; |
|||
|
|||
// Set the prescaler factor to GCLK_TC/16. At nominal 48MHz GCLK_TC this is 3000 ticks per millisecond
|
|||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV16; |
|||
|
|||
// Count up
|
|||
tc->COUNT16.CTRLBCLR.bit.DIR = 1; |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
|
|||
// First interrupt request after 1 ms
|
|||
tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(1000UL); |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
|
|||
// Configure interrupt request
|
|||
// TODO this should be changed if more than one channel per timer is used by the Servo library
|
|||
NVIC_DisableIRQ(irqn); |
|||
NVIC_ClearPendingIRQ(irqn); |
|||
NVIC_SetPriority(irqn, 0); |
|||
NVIC_EnableIRQ(irqn); |
|||
|
|||
// Enable the match channel interrupt request
|
|||
tc->COUNT16.INTENSET.reg = intEnableBit; |
|||
|
|||
// Enable the timer and start it
|
|||
tc->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE; |
|||
WAIT_TC16_REGS_SYNC(tc) |
|||
} |
|||
|
|||
static void initISR(timer16_Sequence_t timer) |
|||
{ |
|||
#if defined (_useTimer1) |
|||
if (timer == _timer1) |
|||
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1, GCM_FOR_TIMER_1, INTENSET_BIT_FOR_TIMER_1); |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
if (timer == _timer2) |
|||
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2, GCM_FOR_TIMER_2, INTENSET_BIT_FOR_TIMER_2); |
|||
#endif |
|||
} |
|||
|
|||
static void finISR(timer16_Sequence_t timer) |
|||
{ |
|||
#if defined (_useTimer1) |
|||
// Disable the match channel interrupt request
|
|||
TC_FOR_TIMER1->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_1; |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
// Disable the match channel interrupt request
|
|||
TC_FOR_TIMER2->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_2; |
|||
#endif |
|||
} |
|||
|
|||
static boolean isTimerActive(timer16_Sequence_t timer) |
|||
{ |
|||
// returns true if any servo is active on this timer
|
|||
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { |
|||
if(SERVO(timer,channel).Pin.isActive == true) |
|||
return true; |
|||
} |
|||
return false; |
|||
} |
|||
|
|||
/****************** end of static functions ******************************/ |
|||
|
|||
Servo::Servo() |
|||
{ |
|||
if (ServoCount < MAX_SERVOS) { |
|||
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
|||
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
|
|||
} else { |
|||
this->servoIndex = INVALID_SERVO; // too many servos
|
|||
} |
|||
} |
|||
|
|||
uint8_t Servo::attach(int pin) |
|||
{ |
|||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); |
|||
} |
|||
|
|||
uint8_t Servo::attach(int pin, int min, int max) |
|||
{ |
|||
timer16_Sequence_t timer; |
|||
|
|||
if (this->servoIndex < MAX_SERVOS) { |
|||
pinMode(pin, OUTPUT); // set servo pin to output
|
|||
servos[this->servoIndex].Pin.nbr = pin; |
|||
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
|||
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
|||
this->max = (MAX_PULSE_WIDTH - max)/4; |
|||
// initialize the timer if it has not already been initialized
|
|||
timer = SERVO_INDEX_TO_TIMER(servoIndex); |
|||
if (isTimerActive(timer) == false) { |
|||
initISR(timer); |
|||
} |
|||
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
|||
} |
|||
return this->servoIndex; |
|||
} |
|||
|
|||
void Servo::detach() |
|||
{ |
|||
timer16_Sequence_t timer; |
|||
|
|||
servos[this->servoIndex].Pin.isActive = false; |
|||
timer = SERVO_INDEX_TO_TIMER(servoIndex); |
|||
if(isTimerActive(timer) == false) { |
|||
finISR(timer); |
|||
} |
|||
} |
|||
|
|||
void Servo::write(int value) |
|||
{ |
|||
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
|||
if (value < MIN_PULSE_WIDTH) |
|||
{ |
|||
if (value < 0) |
|||
value = 0; |
|||
else if (value > 180) |
|||
value = 180; |
|||
|
|||
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); |
|||
} |
|||
writeMicroseconds(value); |
|||
} |
|||
|
|||
void Servo::writeMicroseconds(int value) |
|||
{ |
|||
// calculate and store the values for the given channel
|
|||
byte channel = this->servoIndex; |
|||
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
|||
{ |
|||
if (value < SERVO_MIN()) // ensure pulse width is valid
|
|||
value = SERVO_MIN(); |
|||
else if (value > SERVO_MAX()) |
|||
value = SERVO_MAX(); |
|||
|
|||
value = value - TRIM_DURATION; |
|||
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
|
|||
servos[channel].ticks = value; |
|||
} |
|||
} |
|||
|
|||
int Servo::read() // return the value as degrees
|
|||
{ |
|||
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); |
|||
} |
|||
|
|||
int Servo::readMicroseconds() |
|||
{ |
|||
unsigned int pulsewidth; |
|||
if (this->servoIndex != INVALID_SERVO) |
|||
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION; |
|||
else |
|||
pulsewidth = 0; |
|||
|
|||
return pulsewidth; |
|||
} |
|||
|
|||
bool Servo::attached() |
|||
{ |
|||
return servos[this->servoIndex].Pin.isActive; |
|||
} |
|||
|
|||
#endif // ARDUINO_ARCH_SAMD
|
@ -0,0 +1,71 @@ |
|||
/*
|
|||
Copyright (c) 2015 Arduino LLC. All right reserved. |
|||
|
|||
This library is free software; you can redistribute it and/or |
|||
modify it under the terms of the GNU Lesser General Public |
|||
License as published by the Free Software Foundation; either |
|||
version 2.1 of the License, or (at your option) any later version. |
|||
|
|||
This library is distributed in the hope that it will be useful, |
|||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|||
Lesser General Public License for more details. |
|||
|
|||
You should have received a copy of the GNU Lesser General Public |
|||
License along with this library; if not, write to the Free Software |
|||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|||
*/ |
|||
|
|||
/*
|
|||
* Defines for 16 bit timers used with Servo library |
|||
* |
|||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board |
|||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated |
|||
* _Nbr_16timers indicates how many 16 bit timers are available. |
|||
*/ |
|||
|
|||
#ifndef __SERVO_TIMERS_H__ |
|||
#define __SERVO_TIMERS_H__ |
|||
|
|||
/**
|
|||
* SAMD Only definitions |
|||
* --------------------- |
|||
*/ |
|||
|
|||
// For SAMD:
|
|||
#define _useTimer1 |
|||
//#define _useTimer2 // <- TODO do not activate until the code in Servo.cpp has been changed in order
|
|||
// to manage more than one channel per timer on the SAMD architecture
|
|||
|
|||
#if defined (_useTimer1) |
|||
#define TC_FOR_TIMER1 TC4 |
|||
#define CHANNEL_FOR_TIMER1 0 |
|||
#define INTENSET_BIT_FOR_TIMER_1 TC_INTENSET_MC0 |
|||
#define INTENCLR_BIT_FOR_TIMER_1 TC_INTENCLR_MC0 |
|||
#define INTFLAG_BIT_FOR_TIMER_1 TC_INTFLAG_MC0 |
|||
#define ID_TC_FOR_TIMER1 ID_TC4 |
|||
#define IRQn_FOR_TIMER1 TC4_IRQn |
|||
#define HANDLER_FOR_TIMER1 TC4_Handler |
|||
#define GCM_FOR_TIMER_1 GCM_TC4_TC5 |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
#define TC_FOR_TIMER2 TC4 |
|||
#define CHANNEL_FOR_TIMER2 1 |
|||
#define INTENSET_BIT_FOR_TIMER_2 TC_INTENSET_MC1 |
|||
#define INTENCLR_BIT_FOR_TIMER_2 TC_INTENCLR_MC1 |
|||
#define ID_TC_FOR_TIMER2 ID_TC4 |
|||
#define IRQn_FOR_TIMER2 TC4_IRQn |
|||
#define HANDLER_FOR_TIMER2 TC4_Handler |
|||
#define GCM_FOR_TIMER_2 GCM_TC4_TC5 |
|||
#endif |
|||
|
|||
typedef enum { |
|||
#if defined (_useTimer1) |
|||
_timer1, |
|||
#endif |
|||
#if defined (_useTimer2) |
|||
_timer2, |
|||
#endif |
|||
_Nbr_16timers } timer16_Sequence_t; |
|||
|
|||
#endif // __SERVO_TIMERS_H__
|
Binary file not shown.
@ -0,0 +1,27 @@ |
|||
//www.elegoo.com
|
|||
//2016.12.08
|
|||
#include </Users/Imogen/Documents/Arduino/libraries/Servo/Servo.h> |
|||
#include </Users/Imogen/Documents/Arduino/libraries/Servo/Servo.cpp> |
|||
|
|||
Servo myservo; // create servo object to control a servo
|
|||
// twelve servo objects can be created on most boards
|
|||
|
|||
int pos = 0; // variable to store the servo position
|
|||
|
|||
void setup() { |
|||
myservo.attach(9); // attaches the servo on pin 9 to the servo object
|
|||
} |
|||
|
|||
void loop() { |
|||
for (pos = 0; pos <= 90; pos += 1) { // goes from 0 degrees to 180 degrees
|
|||
// in steps of 1 degree
|
|||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
|||
delay(50); // waits 15ms for the servo to reach the position
|
|||
} |
|||
delay(1000); |
|||
for (pos = 90; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
|
|||
myservo.write(pos); // tell servo to go to position in variable 'pos'
|
|||
delay(50); // waits 15ms for the servo to reach the position
|
|||
} |
|||
} |
|||
|
@ -0,0 +1,14 @@ |
|||
Dear Customer, |
|||
|
|||
Thanks a lot for your support and purchasing Elegoo products. |
|||
|
|||
We keep updating our tutorialso the tutorial in the CD may not be the latest version. |
|||
|
|||
If you need the latest tutorial, you may download the tutorial from www.elegoo.com |
|||
|
|||
We apologize for the inconvenience caused and should you have additional questions or problems during testing, |
|||
please feel free to contact us at service@elegoo.com or euservice@elegoo.com. |
|||
|
|||
Thanks and best regards |
|||
|
|||
Elegoo Support Team |
Binary file not shown.
@ -0,0 +1,83 @@ |
|||
// --------------------------------------
|
|||
// i2c_scanner
|
|||
//
|
|||
// Version 1
|
|||
// This program (or code that looks like it)
|
|||
// can be found in many places.
|
|||
// For example on the Arduino.cc forum.
|
|||
// The original author is not know.
|
|||
// Version 2, Juni 2012, Using Arduino 1.0.1
|
|||
// Adapted to be as simple as possible by Arduino.cc user Krodal
|
|||
// Version 3, Feb 26 2013
|
|||
// V3 by louarnold
|
|||
// Version 4, March 3, 2013, Using Arduino 1.0.3
|
|||
// by Arduino.cc user Krodal.
|
|||
// Changes by louarnold removed.
|
|||
// Scanning addresses changed from 0...127 to 1...119,
|
|||
// according to the i2c scanner by Nick Gammon
|
|||
// http://www.gammon.com.au/forum/?id=10896
|
|||
// Version 5, March 28, 2013
|
|||
// As version 4, but address scans now to 127.
|
|||
// A sensor seems to use address 120.
|
|||
// Version 6, November 27, 2015.
|
|||
// Added waiting for the Leonardo serial communication.
|
|||
//
|
|||
//
|
|||
// This sketch tests the standard 7-bit addresses
|
|||
// Devices with higher bit address might not be seen properly.
|
|||
//
|
|||
|
|||
#include <Wire.h> |
|||
|
|||
|
|||
void setup() |
|||
{ |
|||
Wire.begin(); |
|||
|
|||
Serial.begin(9600); |
|||
while (!Serial); // Leonardo: wait for serial monitor
|
|||
Serial.println("\nI2C Scanner"); |
|||
} |
|||
|
|||
|
|||
void loop() |
|||
{ |
|||
byte error, address; |
|||
int nDevices; |
|||
|
|||
Serial.println("Scanning..."); |
|||
|
|||
nDevices = 0; |
|||
for(address = 1; address < 127; address++ ) |
|||
{ |
|||
// The i2c_scanner uses the return value of
|
|||
// the Write.endTransmisstion to see if
|
|||
// a device did acknowledge to the address.
|
|||
Wire.beginTransmission(address); |
|||
error = Wire.endTransmission(); |
|||
|
|||
if (error == 0) |
|||
{ |
|||
Serial.print("I2C device found at address 0x"); |
|||
if (address<16) |
|||
Serial.print("0"); |
|||
Serial.print(address,HEX); |
|||
Serial.println(" !"); |
|||
|
|||
nDevices++; |
|||
} |
|||
else if (error==4) |
|||
{ |
|||
Serial.print("Unknown error at address 0x"); |
|||
if (address<16) |
|||
Serial.print("0"); |
|||
Serial.println(address,HEX); |
|||
} |
|||
} |
|||
if (nDevices == 0) |
|||
Serial.println("No I2C devices found\n"); |
|||
else |
|||
Serial.println("done\n"); |
|||
|
|||
delay(5000); // wait 5 seconds for next scan
|
|||
} |
@ -0,0 +1,43 @@ |
|||
int rPin = 11; |
|||
int gPin = 10; |
|||
int bPin = 9; |
|||
|
|||
int tstPin = 3; |
|||
|
|||
void setup() { |
|||
// put your setup code here, to run once:
|
|||
pinMode(rPin, OUTPUT); // R
|
|||
pinMode(gPin, OUTPUT); // G
|
|||
pinMode(bPin, OUTPUT); // B
|
|||
pinMode(5, OUTPUT); // transistor
|
|||
pinMode(4, OUTPUT); // transistor
|
|||
|
|||
pinMode(tstPin, OUTPUT); // test
|
|||
} |
|||
|
|||
void loop() { |
|||
// put your main code here, to run repeatedly:
|
|||
if(rand()%2){ |
|||
digitalWrite(tstPin,HIGH); |
|||
} |
|||
else{ |
|||
digitalWrite(tstPin,LOW); |
|||
} |
|||
digitalWrite(rPin,0.6*15); |
|||
digitalWrite(gPin,0.3*15*0); |
|||
digitalWrite(bPin,0.1*15*0); |
|||
if(rand()%2){ |
|||
digitalWrite(4,HIGH); |
|||
} |
|||
else{ |
|||
digitalWrite(4,LOW); |
|||
} |
|||
if(rand()%2){ |
|||
digitalWrite(5,HIGH); |
|||
} |
|||
else{ |
|||
digitalWrite(5,LOW); |
|||
} |
|||
// digitalWrite(5,LOW);
|
|||
delay(1000); |
|||
} |
Loading…
Reference in new issue