Browse Source

adding projects

main
mm 3 years ago
commit
30b84d0340
  1. 56
      CountDown/CountDown.ino
  2. 62
      CountUp/CountUp.ino
  3. 162
      Workstation/Workstation.ino
  4. 347
      _4to7pins/_4to7pins.ino
  5. 430
      controlLED/controlLED.ino
  6. 100
      controlservo/controlservo.ino
  7. BIN
      elegoo-kit-lessons/.DS_Store
  8. BIN
      elegoo-kit-lessons/Elegoo Super Starter Kit for UNO V1.0.2017.7.9.pdf
  9. BIN
      elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/.DS_Store
  10. BIN
      elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/HC-SR04.zip
  11. 21
      elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/SR04_Example/SR04_Example.ino
  12. BIN
      elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/.DS_Store
  13. BIN
      elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/DHT11/.DS_Store
  14. 121
      elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/DHT11/DHT11.ino
  15. BIN
      elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/SimpleDHT.zip
  16. 26
      elegoo-kit-lessons/Lesson 12 Analog Joystick Module/Analog_Joystick/Analog_Joystick.ino
  17. BIN
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/.DS_Store
  18. BIN
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IR_Receiver_Module/.DS_Store
  19. 77
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IR_Receiver_Module/IR_Receiver_Module.ino
  20. BIN
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote.zip
  21. BIN
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/.DS_Store
  22. 1154
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.cpp
  23. 128
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.h
  24. 515
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremoteInt.h
  25. 458
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/LICENSE.txt
  26. 168
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecord/IRrecord.ino
  27. 128
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecord/IRremote.h
  28. 29
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecvDemo/IRrecvDemo.ino
  29. 85
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecvDump/IRrecvDump.ino
  30. 85
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrelay/IRrelay.ino
  31. 25
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRsendDemo/IRsendDemo.ino
  32. 190
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRtest/IRtest.ino
  33. 290
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRtest2/IRtest2.ino
  34. 29
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/JVCPanasonicSendDemo/JVCPanasonicSendDemo.ino
  35. 51
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/keywords.txt
  36. 14
      elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/readme
  37. BIN
      elegoo-kit-lessons/Lesson 14 LCD Display/.DS_Store
  38. 63
      elegoo-kit-lessons/Lesson 14 LCD Display/HelloWorld/HelloWorld.ino
  39. BIN
      elegoo-kit-lessons/Lesson 14 LCD Display/LiquidCrystal.zip
  40. BIN
      elegoo-kit-lessons/Lesson 15 Thermometer/LiquidCrystal.zip
  41. 36
      elegoo-kit-lessons/Lesson 15 Thermometer/Thermometer/Thermometer.ino
  42. 37
      elegoo-kit-lessons/Lesson 16 Eight LED with 74HC595/Eight_LED_with_74HC595_Flash_LED/Eight_LED_with_74HC595_Flash_LED.ino
  43. 48
      elegoo-kit-lessons/Lesson 17 The Serial Monitor/The_Serial_Monitor/The_Serial_Monitor.ino
  44. 36
      elegoo-kit-lessons/Lesson 18 Photocell/Photocell/Photocell.ino
  45. 55
      elegoo-kit-lessons/Lesson 19 74HC595 And Segment Display/_75hc/_75hc.ino
  46. 56
      elegoo-kit-lessons/Lesson 20 Four Digital Seven Segment Display/Four_Digital/Four_Digital.ino
  47. 74
      elegoo-kit-lessons/Lesson 21 DC Motors/DC_Motor/DC_Motor.ino
  48. 49
      elegoo-kit-lessons/Lesson 22 Relay/Relay/Relay.ino
  49. BIN
      elegoo-kit-lessons/Lesson 23 Stepper Motor/Stepper.zip
  50. 40
      elegoo-kit-lessons/Lesson 23 Stepper Motor/stepper_oneRevolution/stepper_oneRevolution.ino
  51. BIN
      elegoo-kit-lessons/Lesson 24 Controlling Stepper Motor With Remote/IRremote.zip
  52. BIN
      elegoo-kit-lessons/Lesson 24 Controlling Stepper Motor With Remote/Stepper.zip
  53. 58
      elegoo-kit-lessons/Lesson 24 Controlling Stepper Motor With Remote/With_Remote/With_Remote.ino
  54. 83
      elegoo-kit-lessons/Lesson 4 RGB LED/RGB_LED/RGB_LED.ino
  55. 27
      elegoo-kit-lessons/Lesson 5 Digital Inputs/Digital_Inputs/Digital_Inputs.ino
  56. 31
      elegoo-kit-lessons/Lesson 6 Making Sounds/active/active.ino
  57. 26
      elegoo-kit-lessons/Lesson 7 Passive Buzzer/passive_buzzer/passive_buzzer.ino
  58. BIN
      elegoo-kit-lessons/Lesson 7 Passive Buzzer/pitches.zip
  59. 26
      elegoo-kit-lessons/Lesson 8 Ball Switch/Ball_Switch/Ball_Switch.ino
  60. BIN
      elegoo-kit-lessons/Lesson 9 Servo/.DS_Store
  61. 25
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/README.adoc
  62. 27
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Knob/Knob.ino
  63. 32
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Sweep/Sweep.ino
  64. 24
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/keywords.txt
  65. 9
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/library.properties
  66. 112
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/Servo.h
  67. 317
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/Servo.cpp
  68. 59
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/ServoTimers.h
  69. 283
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/Servo.cpp
  70. 88
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/ServoTimers.h
  71. 297
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/Servo.cpp
  72. 71
      elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/ServoTimers.h
  73. BIN
      elegoo-kit-lessons/Lesson 9 Servo/Servo.zip
  74. 27
      elegoo-kit-lessons/Lesson 9 Servo/servo/servo.ino
  75. 14
      elegoo-kit-lessons/README.txt
  76. BIN
      elegoo-kit-lessons/UNO R3 DRIVER FAQ.pdf
  77. 83
      i2c_scanner/i2c_scanner.ino
  78. 43
      randomart_tester/randomart_tester.ino

56
CountDown/CountDown.ino

@ -0,0 +1,56 @@
/* SevSeg Counter Example
Copyright 2017 Dean Reading
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
This example demonstrates a very simple use of the SevSeg library with a 4
digit display. It displays a counter that counts up, showing deci-seconds.
*/
#include "SevSeg.h"
SevSeg sevseg; //Instantiate a seven segment controller object
void setup() {
byte numDigits = 4;
byte digitPins[] = {2, 3, 4, 5};
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12, 13};
bool resistorsOnSegments = false; // 'false' means resistors are on digit pins
byte hardwareConfig = COMMON_CATHODE; // See README.md for options
bool updateWithDelays = false; // Default. Recommended
bool leadingZeros = false; // Use 'true' if you'd like to keep the leading zeros
sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments, updateWithDelays, leadingZeros);
sevseg.setBrightness(10);
pinMode(A5, INPUT_PULLUP);
pinMode(A1, INPUT_PULLUP);
// Serial.begin(9600); // debugging
}
float lastReset = 0.0;
void loop() {
unsigned long runMillis= millis();
float actualDays = runMillis/86400000.0;
float days = actualDays - lastReset;
sevseg.setNumber(days, 3);
sevseg.refreshDisplay(); // Must run repeatedly
// Serial.println(actualDays,5); // debugging
// Serial.println(digitalRead(A1)); // debugging
if(!digitalRead(A5)){
lastReset = actualDays;
}
if(!digitalRead(A1)){
lastReset = actualDays;
}
}
/// END ///

62
CountUp/CountUp.ino

@ -0,0 +1,62 @@
/* SevSeg Counter Example
Copyright 2017 Dean Reading
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
This example demonstrates a very simple use of the SevSeg library with a 4
digit display. It displays a counter that counts up, showing deci-seconds.
*/
#include "SevSeg.h"
SevSeg sevseg; //Instantiate a seven segment controller object
void setup() {
byte numDigits = 4;
byte digitPins[] = {2, 3, 4, 5};
byte segmentPins[] = {6, 7, 8, 9, 10, 11, 12, 13};
bool resistorsOnSegments = false; // 'false' means resistors are on digit pins
byte hardwareConfig = COMMON_CATHODE; // See README.md for options
bool updateWithDelays = false; // Default. Recommended
bool leadingZeros = false; // Use 'true' if you'd like to keep the leading zeros
sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments, updateWithDelays, leadingZeros);
sevseg.setBrightness(10);
pinMode(A5, INPUT_PULLUP);
pinMode(A1, INPUT_PULLUP);
// Serial.begin(9600); // debugging
}
int decPlaces = 3;
float lastReset = 0; // optional button reset - orange wire connected to A1, or programmable button on A5
void loop() {
unsigned long runMillis= millis();
float actualDays = runMillis/86400000.0;
float days = actualDays - lastReset;
sevseg.setNumber(days, decPlaces);
sevseg.refreshDisplay(); // Must run repeatedly
// Serial.println(actualDays,5); // debugging
// Serial.println(digitalRead(A1)); // debugging
if(!digitalRead(A1)){lastReset -= 0.001;}
// if(!digitalRead(A5)){lastReset = actualDays;}
// program A5 as decimal place changer
if(!digitalRead(A5)){
// if(decPlaces == 2){decPlaces = 3;}
// if(decPlaces == 3){decPlaces = 2;}
decPlaces = (decPlaces + 1)%2 + 2;
delay(250);
}
}
/// END ///

162
Workstation/Workstation.ino

@ -0,0 +1,162 @@
//YWROBOT
//Compatible with the Arduino IDE 1.0
//Library version:1.1
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include <TM1638.h>
LiquidCrystal_I2C lcd(0x27,20,4); // set the LCD address to 0x27 for a 16 chars and 2 line display
TM1638 module(3, 2, 4);
#define NO_MODULES 1
TM1638* modules[NO_MODULES] = {
&module
};
byte modes[NO_MODULES];
unsigned long trump_reset;
unsigned long startTime;
unsigned long study_reset;
const int buttondelay = 150; // millis delay for button bounceback
const int backlight_pin = 7;
const int rPin = 10; // RGB pins
const int gPin = 9;
const int bPin = 8;
int rval = 0;
int gval = 0;
int bval = 0;
bool backlight_status = 1;
int daysSinceLastReset = 0;
int studySessions = 0;
void update(TM1638* module, byte* mode) {
byte buttons = module->getButtons();
unsigned long runningSecs = (millis() - startTime) / 1000;
float studyMins = (millis() - study_reset) / (1000.0*60);
float trumpDays = (millis() - trump_reset) / (1000.0*60*60*24);
if(module->getButtons() == 128 ){
backlight_status = !backlight_status;
digitalWrite(backlight_pin, backlight_status);
delay(buttondelay);
// module->clearDisplay();
}
// button pressed - change mode
if (buttons != 0) {
*mode = buttons;
}
// STUDY TIMER ON LCD
lcd.setCursor(6,3);
lcd.print(int(studyMins));
lcd.setCursor(3,3);
lcd.print(studySessions);
lcd.setCursor(0,3);
lcd.print(daysSinceLastReset);
module->setLEDs(*mode);
switch (*mode) {
case 1 << 0: // STUDY TIMER SUMMARY
char s[8];
studySessions = int(studyMins/90);
daysSinceLastReset = studySessions%16;
sprintf(s, "%2d.%2d.%2d", daysSinceLastReset, studySessions, int(studyMins)%90 );
module->setDisplayToString(s);
break;
case 1 << 1:
module->setDisplayToDecNumber(10000*studyMins, 1 << 4, false);
break;
case 1 << 2:
module->setDisplayToDecNumber(1000000*trumpDays, 1 << 6, false);
break;
case 1 << 3:
module->setDisplayToDecNumber(runningSecs, 1 << 5, false);
break;
case 1 << 4: // Button 5
module->clearDisplay();
module->clearDisplayDigit((runningSecs - 1) % 8, 0);
module->setDisplayDigit(runningSecs % 8, runningSecs % 8, 0);
break;
case 1 << 5: // reset study timer
study_reset = millis();
*mode = 1 << 1;
delay(buttondelay);
module->clearDisplay();
break;
case 1 << 6: // reset trump timer
trump_reset = millis();
*mode = 1 << 2;
delay(buttondelay);
module->clearDisplay();
break;
case 1 << 7: // Button 8, reset backlight
module->clearDisplay();
break;
case 65:
module->setDisplayToError();
break;
}
}
void setup()
{
for (int i = 0; i < NO_MODULES; i++) {
modules[i]->setupDisplay(true, 7);
modes[i] = 0;
}
startTime = millis();
study_reset = millis();
trump_reset = millis();
lcd.init(); // initialize the lcd
pinMode(backlight_pin, OUTPUT);
digitalWrite(backlight_pin, backlight_status);
// Print a message to the LCD.
lcd.backlight();
lcd.setCursor(2,0);
lcd.print("ACTION EXPRESSES");
lcd.setCursor(6,1);
lcd.print("PRIORITY.");
lcd.setCursor(15,2);
lcd.print("ABK");
}
void loop()
{
for (int i = 0; i < NO_MODULES; i++) {
update(modules[i], &modes[i]);
}
// RGB LED
rval = max( rval + rand()%3 - 1, 0); // markov chain
gval = max( gval + rand()%3 - 1, 0);
bval = max( bval + rand()%3 - 1, 0);
rval = min(rval, 255);
gval = min(gval, 255);
bval = min(bval, 255);
lcd.setCursor(10,2);
lcd.print(rval);
digitalWrite(rPin, 0.6*rval);
lcd.setCursor(5,2);
lcd.print(gval);
digitalWrite(gPin, 0.3*gval);
lcd.setCursor(0,2);
digitalWrite(bPin, 0.1*bval);
lcd.print(bval);
}

347
_4to7pins/_4to7pins.ino

@ -0,0 +1,347 @@
/*
This Arduino code for "4-digit-7-segment-led-display" (KYX-5461AS).
* This code can display one Number in all 4 digit!
* This code can display 4 Numbers each on in specific digit
* This code can also make a Number Countdown (Timers).
author : Oussama Amri (@amriunix)
website : ithepro.com
*/
//display pins
int segA = 5; // >> 11
int segB = 13; // >> 7
int segC = 10; // >> 4
int segD = 8; // >> 2
int segE = 7; // >> 1
int segF = 4; // >> 10
int segG = 11; // >> 5
int segPt = 9; // >> 3
//------------//
//display digit
int d1 = 6; // >> 12
int d2 = 3; // >> 9
int d3 = 2; // >> 8
int d4 = 12; // >> 6
//------------//
int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>
int mydelay = 3000; // 50 is about one second, 3000 a minute
int i=0;
//=============================================//
//init all pin used
void setup() {
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
pinMode(7, OUTPUT);
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);
pinMode(11, OUTPUT);
pinMode(12, OUTPUT);
pinMode(13, OUTPUT);
}
//=============================================//
void loop() {
downup(0,20,9,0); // numbers above 19 display as blank.
//all(8);
//writeN(1,9,0,4);
}
//=============================================//
//Write a Number - writeN(1,9,9,0) -> 1990
void writeN(int a,int b,int c,int d){
selectDwriteL(1,a);
selectDwriteL(2,b);
selectDwriteL(3,c);
selectDwriteL(4,d);
}
//=============================================//
//Make a Number Number Countdown (Timers).
void downup(int a,int b,int c,int d){
while (a != -1) {
while(b != -1){
while(c != -1){
while (d != -1) {
while (i<mydelay) { // i here is like a timer ! because we can't use delay function
selectDwriteL(1,a);
selectDwriteL(2,b);
selectDwriteL(3,c);
selectDwriteL(4,d);
i++;
}
i=0;
d--;
}
d=9;
c--;
}
c=9;
a++; // iterate the first digit to count up while the last two digits count down.
//b--; // this uncommented leaves the second digit blank
}
a=9;
//a++;
//a--;
}
}
//=============================================//
//Make a Number Number Countdown (Timers).
void down(int a,int b,int c,int d){
while (a != -1) {
while(b != -1){
while(c != -1){
while (d != -1) {
while (i<mydelay) { // i here is like a timer ! because we can't use delay function
selectDwriteL(1,a);
selectDwriteL(2,b);
selectDwriteL(3,c);
selectDwriteL(4,d);
i++;
}
i=0;
d--;
}
d=9;
c--;
}
c=9;
b--;
}
b=9;
a--;
}
}
//=============================================//
//Select Wich Digit (selectD) is going to Display (writeL)
void selectDwriteL(int d,int l){
switch (d) { // choose a digit
case 0: digitalWrite(d1, LOW); //case 0 - All ON
digitalWrite(d2, LOW);
digitalWrite(d3, LOW);
digitalWrite(d4, LOW);
break;
case 1: digitalWrite(d1, LOW);//case 1 - Digit Number 1
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
case 2: digitalWrite(d1, HIGH);//case 1 - Digit Number 2
digitalWrite(d2, LOW);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
case 3: digitalWrite(d1, HIGH);//case 1 - Digit Number 3
digitalWrite(d2, HIGH);
digitalWrite(d3, LOW);
digitalWrite(d4, HIGH);
break;
case 4: digitalWrite(d1, HIGH);//case 1 - Digit Number 4
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, LOW);
break;
}
switch (l) { // choose a Number
case 0: zero();
break;
case 1: one();
break;
case 2: two();
break;
case 3: three();
break;
case 4: four();
break;
case 5: five();
break;
case 6: six();
break;
case 7: seven();
break;
case 8: eight();
break;
case 9: nine();
break;
case 10: point(); // print a Point
break;
case 11: one(); digitalWrite(segPt, HIGH);
break;
case 12: two(); digitalWrite(segPt, HIGH);
break;
case 13: three(); digitalWrite(segPt, HIGH);
break;
case 14: four(); digitalWrite(segPt, HIGH);
break;
case 15: five(); digitalWrite(segPt, HIGH);
break;
case 16: six(); digitalWrite(segPt, HIGH);
break;
case 17: seven(); digitalWrite(segPt, HIGH);
break;
case 18: eight(); digitalWrite(segPt, HIGH);
break;
case 19: nine(); digitalWrite(segPt, HIGH);
break;
default: none(); // make all them off !
break;
}
delayMicroseconds(delayTime); // delayTime for nice display of the Number !
}
//=============================================//
//shown one Number in the 4 Digit
void all(int n){
selectDwriteL(0,n);
}
//=============================================//
void zero(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void one(){
digitalWrite(segA, LOW);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void two(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, LOW);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, LOW);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void three(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void four(){
digitalWrite(segA, LOW);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void five(){
digitalWrite(segA, HIGH);
digitalWrite(segB, LOW);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void six(){
digitalWrite(segA, HIGH);
digitalWrite(segB, LOW);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void seven(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void eight(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void nine(){
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void point(){
digitalWrite(segA, LOW);
digitalWrite(segB, LOW);
digitalWrite(segC, LOW);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, HIGH);
}
//=============================================//
void none(){
digitalWrite(segA, LOW);
digitalWrite(segB, LOW);
digitalWrite(segC, LOW);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}

430
controlLED/controlLED.ino

@ -0,0 +1,430 @@
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h"
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp"
// PIN FOR RECEIVER
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
/*-----( Declare objects )-----*/
IRrecv irrecv(receiver); // create instance of 'irrecv'
decode_results results; // create instance of 'decode_results'
/*-----( Function )-----*/
void translateIR() // takes action based on IR code received
// describing Remote IR codes
{
switch (results.value)
{
case 0xFFA25D: Serial.println("POWER"); off(); break;
case 0xFFE21D: Serial.println("FUNC/STOP"); break;
case 0xFF629D: Serial.println("VOL+"); break;
case 0xFF22DD: Serial.println("FAST BACK"); break;
case 0xFF02FD: Serial.println("PAUSE"); break;
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
case 0xFFE01F: Serial.println("DOWN"); break;
case 0xFFA857: Serial.println("VOL-"); break;
case 0xFF906F: Serial.println("UP"); break;
case 0xFF9867: Serial.println("EQ"); downup(6, 9, 0); off(); break;
case 0xFFB04F: Serial.println("ST/REPT"); downup(0, 9, 0); off(); break;
case 0xFF6897: Serial.println("0"); all(0); break;
case 0xFF30CF: Serial.println("1"); all(1); break;
case 0xFF18E7: Serial.println("2"); all(2); break;
case 0xFF7A85: Serial.println("3"); all(3); break;
case 0xFF10EF: Serial.println("4"); all(4); break;
case 0xFF38C7: Serial.println("5"); all(5); break;
case 0xFF5AA5: Serial.println("6"); all(6); break;
case 0xFF42BD: Serial.println("7"); all(7); break;
case 0xFF4AB5: Serial.println("8"); all(8); break;
case 0xFF52AD: Serial.println("9"); all(9); break;
case 0xFFFFFFFF: Serial.println(" REPEAT"); break;
default:
Serial.println(" other button ");
}// End Case
delay(1000); // Do not get immediate repeat
} //END translateIR
///////////////////////////////////////////////
//display pins
int segA = 5; // >> 11
int segB = 13; // >> 7
int segC = 10; // >> 4
int segD = 8; // >> 2
int segE = 7; // >> 1
int segF = 4; // >> 10
int segG = 11; // >> 5
int segPt = 9; // >> 3
//------------//
//display digit
int d1 = 6; // >> 12
int d2 = 3; // >> 9
int d3 = 2; // >> 8
int d4 = 12; // >> 6
//------------//
int delayTime = 5000; //delayTime <Don't change it, if you don't know where is it!>
int mydelay = 3000; // 50 is about one second, 3000 a minute
int i = 0;
//=============================================//
//init all pin used
void setup() {
Serial.begin(9600);
Serial.println("IR Receiver Button Decode - Initializing...");
irrecv.enableIRIn(); // Start the receiver
pinMode(2, OUTPUT);
// pinMode(3, OUTPUT); // reserved for IR input
pinMode(4, OUTPUT);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
pinMode(7, OUTPUT);
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);
pinMode(11, OUTPUT);
pinMode(12, OUTPUT);
pinMode(13, OUTPUT);
}
//=======================================================================================//
//void loop() {
//downup(0,20,9,0); // numbers above 19 display as blank.
////all(8);
////writeN(1,9,0,4);
//}
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/
{
if (irrecv.decode(&results)) // have we received an IR signal?
{
// Serial.println(results.value); // for debugging
translateIR();
irrecv.resume(); // receive the next value
}
}/* --(end main loop )-- */
//=======================================================================================//
//Write a Number - writeN(1,9,9,0) -> 1990
void writeN(int a, int b, int c, int d) {
selectDwriteL(1, a);
selectDwriteL(2, b);
selectDwriteL(3, c);
selectDwriteL(4, d);
}
//=============================================//
//Make a Number Number Countdown (Timers).
void downup(int A, int C, int D) {
irrecv.resume();
int a=0;
int c, d;
bool FLAG = 0;
while (a <= A) {
c = C;
d = D;
while (c != -1) {
while (d != -1) {
while (i < mydelay) { // i here is like a timer ! because we can't use delay function
selectDwriteL(1, a);
selectDwriteL(3, c);
selectDwriteL(4, d);
if (irrecv.decode(&results)) // have we received an IR signal?
{
// if(results.value == 16753245){
translateIR();
FLAG = 1;
// break;
irrecv.resume(); // receive the next value
// }
}
i++;
if(FLAG){d=0;a=A;c=0;i=mydelay;}
}
i = 0;
d--;
}
d = 9;
c--;
}
// c = 9; // third digit
a++; // iterate the first digit to count up while the last two digits count down.
//b--; // this uncommented leaves the second digit blank
}
}
//=============================================//
//Make a Number Number Countdown (Timers).
void down(int a, int b, int c, int d) {
while (a != -1) {
while (b != -1) {
while (c != -1) {
while (d != -1) {
while (i < mydelay) { // i here is like a timer ! because we can't use delay function
selectDwriteL(1, a);
selectDwriteL(2, b);
selectDwriteL(3, c);
selectDwriteL(4, d);
i++;
}
i = 0;
d--;
}
d = 9;
c--;
}
c = 9;
b--;
}
b = 9;
a--;
}
}
//=============================================//
//Select Which Digit (selectD) is going to Display (writeL)
void selectDwriteL(int d, int l) {
switch (d) { // choose a digit
case 0: digitalWrite(d1, LOW); //case 0 - All ON
digitalWrite(d2, LOW);
digitalWrite(d3, LOW);
digitalWrite(d4, LOW);
break;
case 1: digitalWrite(d1, LOW);//case 1 - Digit Number 1
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
case 2: digitalWrite(d1, HIGH);//case 1 - Digit Number 2
digitalWrite(d2, LOW);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
case 3: digitalWrite(d1, HIGH);//case 1 - Digit Number 3
digitalWrite(d2, HIGH);
digitalWrite(d3, LOW);
digitalWrite(d4, HIGH);
break;
case 4: digitalWrite(d1, HIGH);//case 1 - Digit Number 4
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, LOW);
break;
case 5: digitalWrite(d1, HIGH); //case 0 - All ON
digitalWrite(d2, HIGH);
digitalWrite(d3, HIGH);
digitalWrite(d4, HIGH);
break;
}
switch (l) { // choose a Number
case 0: zero();
break;
case 1: one();
break;
case 2: two();
break;
case 3: three();
break;
case 4: four();
break;
case 5: five();
break;
case 6: six();
break;
case 7: seven();
break;
case 8: eight();
break;
case 9: nine();
break;
case 10: point(); // print a Point
break;
case 11: one(); digitalWrite(segPt, HIGH);
break;
case 12: two(); digitalWrite(segPt, HIGH);
break;
case 13: three(); digitalWrite(segPt, HIGH);
break;
case 14: four(); digitalWrite(segPt, HIGH);
break;
case 15: five(); digitalWrite(segPt, HIGH);
break;
case 16: six(); digitalWrite(segPt, HIGH);
break;
case 17: seven(); digitalWrite(segPt, HIGH);
break;
case 18: eight(); digitalWrite(segPt, HIGH);
break;
case 19: nine(); digitalWrite(segPt, HIGH);
break;
case -1: none();
break;
default: none(); // make all them off !
break;
}
delayMicroseconds(delayTime); // delayTime for nice display of the Number !
}
//=============================================//
//shown one Number in the 4 Digit
void all(int n) {
selectDwriteL(0, n);
}
void off() {
selectDwriteL(5, 0);
}
//=============================================//
void zero() {
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void one() {
digitalWrite(segA, LOW);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void two() {
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, LOW);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, LOW);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void three() {
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void four() {
digitalWrite(segA, LOW);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void five() {
digitalWrite(segA, HIGH);
digitalWrite(segB, LOW);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void six() {
digitalWrite(segA, HIGH);
digitalWrite(segB, LOW);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void seven() {
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}
//=============================================//
void eight() {
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, HIGH);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void nine() {
digitalWrite(segA, HIGH);
digitalWrite(segB, HIGH);
digitalWrite(segC, HIGH);
digitalWrite(segD, HIGH);
digitalWrite(segE, LOW);
digitalWrite(segF, HIGH);
digitalWrite(segG, HIGH);
digitalWrite(segPt, LOW);
}
//=============================================//
void point() {
digitalWrite(segA, LOW);
digitalWrite(segB, LOW);
digitalWrite(segC, LOW);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, HIGH);
}
//=============================================//
void none() {
digitalWrite(segA, LOW);
digitalWrite(segB, LOW);
digitalWrite(segC, LOW);
digitalWrite(segD, LOW);
digitalWrite(segE, LOW);
digitalWrite(segF, LOW);
digitalWrite(segG, LOW);
digitalWrite(segPt, LOW);
}

100
controlservo/controlservo.ino

@ -0,0 +1,100 @@
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h"
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp"
#include <Servo.h>
// PIN FOR RECEIVER
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
int pos = 0; // variable to store the servo position
/*-----( Declare objects )-----*/
IRrecv irrecv(receiver); // create instance of 'irrecv'
decode_results results; // create instance of 'decode_results'
Servo myservo; // create servo object to control a servo
/*-----( Function )-----*/
void translateIR() // takes action based on IR code received
// describing Remote IR codes
{
switch (results.value)
{
case 0xFFA25D: Serial.println("POWER"); myservo.attach(9); // attaches the servo on pin 9 to the servo object
break;
case 0xFFE21D: Serial.println("FUNC/STOP"); myservo.detach(); // attaches the servo on pin 9 to the servo object
break;
case 0xFF629D: Serial.println("VOL+"); digitalWrite(8, HIGH); break;
case 0xFF22DD: Serial.println("FAST BACK"); break;
case 0xFF02FD: Serial.println("PAUSE"); break;
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
case 0xFFE01F: Serial.println("DOWN"); for (pos = 5; pos >=0; pos-=1){myservo.attach(9); myservo.write(pos); delay(15); myservo.detach();} break;
case 0xFFA857: Serial.println("VOL-"); digitalWrite(8, LOW); break;
case 0xFF906F: Serial.println("UP"); for (pos = 0; pos <=5; pos+=1){myservo.attach(9); myservo.write(pos); delay(15); myservo.detach();} break;
case 0xFF9867: Serial.println("EQ"); break;
case 0xFFB04F: Serial.println("ST/REPT"); break;
case 0xFF6897: Serial.println("0"); break;
case 0xFF30CF: Serial.println("1"); break;
case 0xFF18E7: Serial.println("2"); break;
case 0xFF7A85: Serial.println("3");; break;
case 0xFF10EF: Serial.println("4"); break;
case 0xFF38C7: Serial.println("5"); break;
case 0xFF5AA5: Serial.println("6"); break;
case 0xFF42BD: Serial.println("7"); break;
case 0xFF4AB5: Serial.println("8"); break;
case 0xFF52AD: Serial.println("9"); break;
//case 0xFFFFFFFF: Serial.println(" REPEAT"); digitalWrite(8, LOW); break;
default:
Serial.println(" other button ");
}// End Case
delay(50); // Do not get immediate repeat
} //END translateIR
//=============================================//
//init all pin used
void setup() {
Serial.begin(9600);
Serial.println("IR Receiver Button Decode - Initializing...");
irrecv.enableIRIn(); // Start the receiver
pinMode(2, OUTPUT);
// pinMode(3, OUTPUT); // reserved for IR input
// pinMode(4, OUTPUT);
// pinMode(5, OUTPUT);
// pinMode(6, OUTPUT);
// pinMode(7, OUTPUT);
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);
myservo.attach(9); // attaches the servo on pin 9 to the servo object
// pinMode(10, OUTPUT);
// pinMode(11, OUTPUT);
// pinMode(12, OUTPUT);
// pinMode(13, OUTPUT);
}
//=======================================================================================//
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/
{
if (irrecv.decode(&results)) // have we received an IR signal?
{
// Serial.println(results.value); // for debugging
translateIR();
irrecv.resume(); // receive the next value
}
}/* --(end main loop )-- */

BIN
elegoo-kit-lessons/.DS_Store

Binary file not shown.

BIN
elegoo-kit-lessons/Elegoo Super Starter Kit for UNO V1.0.2017.7.9.pdf

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/.DS_Store

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/HC-SR04.zip

Binary file not shown.

21
elegoo-kit-lessons/Lesson 10 Ultrasonic Sensor Module/SR04_Example/SR04_Example.ino

@ -0,0 +1,21 @@
//www.elegoo.com
//2016.12.08
#include "SR04.h"
#define TRIG_PIN 12
#define ECHO_PIN 11
SR04 sr04 = SR04(ECHO_PIN,TRIG_PIN);
long a;
void setup() {
Serial.begin(9600);
delay(1000);
}
void loop() {
a=sr04.Distance();
if(a>0){
Serial.print(a);
Serial.println("cm");
}
delay(10);
}

BIN
elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/.DS_Store

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/DHT11/.DS_Store

Binary file not shown.

121
elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/DHT11/DHT11.ino

@ -0,0 +1,121 @@
//www.elegoo.com
//2016.12.9
#include <SimpleDHT.h>
#include <avr/sleep.h>
// for DHT11,
// VCC: 5V or 3V
// GND: GND
// DATA: 2
int pinDHT11 = 2;
SimpleDHT11 dht11;
void blink(int delayTime) {
digitalWrite(13, HIGH);
delay(delayTime);
digitalWrite(13, LOW);
delay(delayTime);
}
void change(){
delay(500);
blink(1000);
delay(500);
}
int ct = 0;
int SerialTransmit = 1;
int pin2_interrupt_flag = 0;
void pin2_isr()
{
sleep_disable();
detachInterrupt(0);
pin2_interrupt_flag = 1;
}
void setup() {
if(SerialTransmit){Serial.begin(9600);}
pinMode(13,OUTPUT);
}
void loop() {
// start working...
// sleep_enable();
// attachInterrupt(0, pin2_isr, LOW);
/* 0, 1, or many lines of code here */
if(SerialTransmit){
Serial.println("=================================");
Serial.println("Sample DHT11...");
}
byte temperature = 0;
byte humidity = 0;
byte data[40] = {0};
// read with raw sample data
if(ct >= 0){
dht11.read(pinDHT11, &temperature, &humidity, data);
ct++;
// TEMPERATURE
for (int i = 0; i < (int)temperature/100; i++){
blink(50);
}
change();
for (int i = 0; i < (int)temperature/10; i++){
blink(50);
}
change();
for (int i = 0; i < (int)temperature%10; i++){
blink(50);
}
// HUMIDITY
change();
for (int i = 0; i < (int)humidity/10; i++){
blink(50);
}
change();
for (int i = 0; i < (int)humidity%10; i++){
blink(50);
}
}
delay(1000);
if(SerialTransmit){
if (dht11.read(pinDHT11, &temperature, &humidity, data)) {
Serial.print("Read DHT11 failed");
return;
}
Serial.print("Sample RAW Bits: ");
for (int i = 0; i < 40; i++) {
Serial.print((int)data[i]);
if (i > 0 && ((i + 1) % 4) == 0) {
Serial.print(' ');
}
}
Serial.println("");
Serial.print("Sample OK: ");
Serial.print((int)temperature); Serial.print(" *C, ");
Serial.print((int)humidity); Serial.println(" %");
// DHT11 sampling rate is 1HZ.
delay(1000);
}
// set_sleep_mode(SLEEP_MODE_PWR_DOWN);
// cli();
// sleep_bod_disable();
// sei();
// sleep_cpu();
// /* wake up here */
// sleep_disable();
// ct = 0;
}

BIN
elegoo-kit-lessons/Lesson 11 DHT11 Temperature and Humidity Sensor/SimpleDHT.zip

Binary file not shown.

26
elegoo-kit-lessons/Lesson 12 Analog Joystick Module/Analog_Joystick/Analog_Joystick.ino

@ -0,0 +1,26 @@
//www.elegoo.com
//2016.12.09
// Arduino pin numbers
const int SW_pin = 2; // digital pin connected to switch output
const int X_pin = 0; // analog pin connected to X output
const int Y_pin = 1; // analog pin connected to Y output
void setup() {
pinMode(SW_pin, INPUT);
digitalWrite(SW_pin, HIGH);
Serial.begin(9600);
}
void loop() {
Serial.print("Switch: ");
Serial.print(digitalRead(SW_pin));
Serial.print("\n");
Serial.print("X-axis: ");
Serial.print(analogRead(X_pin));
Serial.print("\n");
Serial.print("Y-axis: ");
Serial.println(analogRead(Y_pin));
Serial.print("\n\n");
delay(500);
}

BIN
elegoo-kit-lessons/Lesson 13 IR Receiver Module/.DS_Store

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IR_Receiver_Module/.DS_Store

Binary file not shown.

77
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IR_Receiver_Module/IR_Receiver_Module.ino

@ -0,0 +1,77 @@
//www.elegoo.com
//2016.12.9
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h"
#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp"
//#include "/Users/Imogen/Documents/Arduino/libraries/IRremote/IRremoteInt.h"
int LEDPIN = 8;
int receiver = 3; // Signal Pin of IR receiver to Arduino Digital Pin 11
/*-----( Declare objects )-----*/
IRrecv irrecv(receiver); // create instance of 'irrecv'
decode_results results; // create instance of 'decode_results'
/*-----( Function )-----*/
void translateIR() // takes action based on IR code received
// describing Remote IR codes
{
switch(results.value)
{
case 0xFFA25D: Serial.println("POWER"); digitalWrite(LEDPIN, HIGH); break;
case 0xFFE21D: Serial.println("FUNC/STOP"); digitalWrite(LEDPIN, LOW); break;
case 0xFF629D: Serial.println("VOL+"); break;
case 0xFF22DD: Serial.println("FAST BACK"); break;
case 0xFF02FD: Serial.println("PAUSE"); break;
case 0xFFC23D: Serial.println("FAST FORWARD"); break;
case 0xFFE01F: Serial.println("DOWN"); break;
case 0xFFA857: Serial.println("VOL-"); break;
case 0xFF906F: Serial.println("UP"); break;
case 0xFF9867: Serial.println("EQ"); break;
case 0xFFB04F: Serial.println("ST/REPT"); break;
case 0xFF6897: Serial.println("0"); break;
case 0xFF30CF: Serial.println("1"); break;
case 0xFF18E7: Serial.println("2"); break;
case 0xFF7A85: Serial.println("3"); break;
case 0xFF10EF: Serial.println("4"); break;
case 0xFF38C7: Serial.println("5"); break;
case 0xFF5AA5: Serial.println("6"); break;
case 0xFF42BD: Serial.println("7"); break;
case 0xFF4AB5: Serial.println("8"); break;
case 0xFF52AD: Serial.println("9"); break;
//case 0xFFFFFFFF: Serial.println(" REPEAT"); digitalWrite(8, LOW); break;
default:
Serial.println(" other button ");
}// End Case
delay(100); // Do not get immediate repeat
} //END translateIR
void setup() /*----( SETUP: RUNS ONCE )----*/
{
Serial.begin(9600);
Serial.println("IR Receiver Button Decode - Initializing...");
irrecv.enableIRIn(); // Start the receiver
pinMode(LEDPIN, OUTPUT);
Serial.println("Done.");
}/*--(end setup )---*/
void loop() /*----( LOOP: RUNS CONSTANTLY )----*/
{
if (irrecv.decode(&results)) // have we received an IR signal?
{
translateIR();
//Serial.println(results.value);
irrecv.resume(); // receive the next value
}
}/* --(end main loop )-- */

BIN
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote.zip

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/.DS_Store

Binary file not shown.

1154
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.cpp

File diff suppressed because it is too large

128
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremote.h

@ -0,0 +1,128 @@
/*
* IRremote
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
* Edited by Mitra to add new controller SANYO
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
*/
#ifndef IRremote_h
#define IRremote_h
// The following are compile-time library options.
// If you change them, recompile the library.
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
// TEST must be defined for the IRtest unittests to work. It will make some
// methods virtual, which will be slightly slower, which is why it is optional.
// #define DEBUG
// #define TEST
// Results returned from the decoder
class decode_results {
public:
int decode_type; // NEC, SONY, RC5, UNKNOWN
union { // This is used for decoding Panasonic and Sharp data
unsigned int panasonicAddress;
unsigned int sharpAddress;
};
unsigned long value; // Decoded value
int bits; // Number of bits in decoded value
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
int rawlen; // Number of records in rawbuf.
};
// Values for decode_type
#define NEC 1
#define SONY 2
#define RC5 3
#define RC6 4
#define DISH 5
#define SHARP 6
#define PANASONIC 7
#define JVC 8
#define SANYO 9
#define MITSUBISHI 10
#define SAMSUNG 11
#define LG 12
#define UNKNOWN -1
// Decoded value for NEC when a repeat code is received
#define REPEAT 0xffffffff
// main class for receiving IR
class IRrecv
{
public:
IRrecv(int recvpin);
void blink13(int blinkflag);
int decode(decode_results *results);
void enableIRIn();
void resume();
private:
// These are called by decode
int getRClevel(decode_results *results, int *offset, int *used, int t1);
long decodeNEC(decode_results *results);
long decodeSony(decode_results *results);
long decodeSanyo(decode_results *results);
long decodeMitsubishi(decode_results *results);
long decodeRC5(decode_results *results);
long decodeRC6(decode_results *results);
long decodePanasonic(decode_results *results);
long decodeLG(decode_results *results);
long decodeJVC(decode_results *results);
long decodeSAMSUNG(decode_results *results);
long decodeHash(decode_results *results);
int compare(unsigned int oldval, unsigned int newval);
}
;
// Only used for testing; can remove virtual for shorter code
#ifdef TEST
#define VIRTUAL virtual
#else
#define VIRTUAL
#endif
class IRsend
{
public:
IRsend() {}
void sendNEC(unsigned long data, int nbits);
void sendSony(unsigned long data, int nbits);
// Neither Sanyo nor Mitsubishi send is implemented yet
// void sendSanyo(unsigned long data, int nbits);
// void sendMitsubishi(unsigned long data, int nbits);
void sendRaw(unsigned int buf[], int len, int hz);
void sendRC5(unsigned long data, int nbits);
void sendRC6(unsigned long data, int nbits);
void sendDISH(unsigned long data, int nbits);
void sendSharp(unsigned int address, unsigned int command);
void sendSharpRaw(unsigned long data, int nbits);
void sendPanasonic(unsigned int address, unsigned long data);
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
// private:
void sendSAMSUNG(unsigned long data, int nbits);
void enableIROut(int khz);
VIRTUAL void mark(int usec);
VIRTUAL void space(int usec);
}
;
// Some useful constants
#define USECPERTICK 50 // microseconds per clock interrupt tick
#define RAWBUF 100 // Length of raw duration buffer
// Marks tend to be 100us too long, and spaces 100us too short
// when received due to sensor lag.
#define MARK_EXCESS 100
#endif

515
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/IRremoteInt.h

@ -0,0 +1,515 @@
/*
* IRremote
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
*
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#ifndef IRremoteint_h
#define IRremoteint_h
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
// define which timer to use
//
// Uncomment the timer you wish to use on your board. If you
// are using another library which uses timer2, you have options
// to switch IRremote to use a different timer.
// Arduino Mega
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define IR_USE_TIMER1 // tx = pin 11
#define IR_USE_TIMER2 // tx = pin 9
//#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4 // tx = pin 6
//#define IR_USE_TIMER5 // tx = pin 46
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define IR_USE_TIMER1 // tx = pin 17
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
//#define IR_USE_TIMER1 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 9
#define IR_USE_TIMER4_HS // tx = pin 10
// Teensy 3.0
#elif defined(__MK20DX128__)
#define IR_USE_TIMER_CMT // tx = pin 5
// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
//#define IR_USE_TIMER1 // tx = pin 25
#define IR_USE_TIMER2 // tx = pin 1
//#define IR_USE_TIMER3 // tx = pin 16
// Sanguino
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
// Atmega8
#elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
#define IR_USE_TIMER1 // tx = pin 9
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
#else
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER2 // tx = pin 3
#endif
#ifdef F_CPU
#define SYSCLOCK F_CPU // main Arduino clock
#else
#define SYSCLOCK 16000000 // main Arduino clock
#endif
#define ERR 0
#define DECODED 1
// defines for setting and clearing register bits
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
// Pulse parms are *50-100 for the Mark and *50+100 for the space
// First MARK is the one after the long gap
// pulse parameters in usec
#define NEC_HDR_MARK 9000
#define NEC_HDR_SPACE 4500
#define NEC_BIT_MARK 560
#define NEC_ONE_SPACE 1600
#define NEC_ZERO_SPACE 560
#define NEC_RPT_SPACE 2250
#define SONY_HDR_MARK 2400
#define SONY_HDR_SPACE 600
#define SONY_ONE_MARK 1200
#define SONY_ZERO_MARK 600
#define SONY_RPT_LENGTH 45000
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
// SA 8650B
#define SANYO_HDR_MARK 3500 // seen range 3500
#define SANYO_HDR_SPACE 950 // seen 950
#define SANYO_ONE_MARK 2400 // seen 2400
#define SANYO_ZERO_MARK 700 // seen 700
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
#define SANYO_RPT_LENGTH 45000
// Mitsubishi RM 75501
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
// #define MITSUBISHI_RPT_LENGTH 45000
#define RC5_T1 889
#define RC5_RPT_LENGTH 46000
#define RC6_HDR_MARK 2666
#define RC6_HDR_SPACE 889
#define RC6_T1 444
#define RC6_RPT_LENGTH 46000
#define SHARP_BIT_MARK 245
#define SHARP_ONE_SPACE 1805
#define SHARP_ZERO_SPACE 795
#define SHARP_GAP 600000
#define SHARP_TOGGLE_MASK 0x3FF
#define SHARP_RPT_SPACE 3000
#define DISH_HDR_MARK 400
#define DISH_HDR_SPACE 6100
#define DISH_BIT_MARK 400
#define DISH_ONE_SPACE 1700
#define DISH_ZERO_SPACE 2800
#define DISH_RPT_SPACE 6200
#define DISH_TOP_BIT 0x8000
#define PANASONIC_HDR_MARK 3502
#define PANASONIC_HDR_SPACE 1750
#define PANASONIC_BIT_MARK 502
#define PANASONIC_ONE_SPACE 1244
#define PANASONIC_ZERO_SPACE 400
#define JVC_HDR_MARK 8000
#define JVC_HDR_SPACE 4000
#define JVC_BIT_MARK 600
#define JVC_ONE_SPACE 1600
#define JVC_ZERO_SPACE 550
#define JVC_RPT_LENGTH 60000
#define LG_HDR_MARK 8000
#define LG_HDR_SPACE 4000
#define LG_BIT_MARK 600
#define LG_ONE_SPACE 1600
#define LG_ZERO_SPACE 550
#define LG_RPT_LENGTH 60000
#define SAMSUNG_HDR_MARK 5000
#define SAMSUNG_HDR_SPACE 5000
#define SAMSUNG_BIT_MARK 560
#define SAMSUNG_ONE_SPACE 1600
#define SAMSUNG_ZERO_SPACE 560
#define SAMSUNG_RPT_SPACE 2250
#define SHARP_BITS 15
#define DISH_BITS 16
#define TOLERANCE 25 // percent tolerance in measurements
#define LTOL (1.0 - TOLERANCE/100.)
#define UTOL (1.0 + TOLERANCE/100.)
#define _GAP 5000 // Minimum map between transmissions
#define GAP_TICKS (_GAP/USECPERTICK)
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK))
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1))
// receiver states
#define STATE_IDLE 2
#define STATE_MARK 3
#define STATE_SPACE 4
#define STATE_STOP 5
// information for the interrupt handler
typedef struct {
uint8_t recvpin; // pin for IR data from detector
uint8_t rcvstate; // state machine
uint8_t blinkflag; // TRUE to enable blinking of pin 13 on IR processing
unsigned int timer; // state timer, counts 50uS ticks.
unsigned int rawbuf[RAWBUF]; // raw data
uint8_t rawlen; // counter of entries in rawbuf
}
irparams_t;
// Defined in IRremote.cpp
extern volatile irparams_t irparams;
// IR detector output is active low
#define MARK 0
#define SPACE 1
#define TOPBIT 0x80000000
#define NEC_BITS 32
#define SONY_BITS 12
#define SANYO_BITS 12
#define MITSUBISHI_BITS 16
#define MIN_RC5_SAMPLES 11
#define MIN_RC6_SAMPLES 1
#define PANASONIC_BITS 48
#define JVC_BITS 16
#define LG_BITS 28
#define SAMSUNG_BITS 32
// defines for timer2 (8 bits)
#if defined(IR_USE_TIMER2)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
#define TIMER_INTR_NAME TIMER2_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR2A = _BV(WGM20); \
TCCR2B = _BV(WGM22) | _BV(CS20); \
OCR2A = pwmval; \
OCR2B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
#if (TIMER_COUNT_TOP < 256)
#define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS20); \
OCR2A = TIMER_COUNT_TOP; \
TCNT2 = 0; \
})
#else
#define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS21); \
OCR2A = TIMER_COUNT_TOP / 8; \
TCNT2 = 0; \
})
#endif
#if defined(CORE_OC2B_PIN)
#define TIMER_PWM_PIN CORE_OC2B_PIN /* Teensy */
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 9 /* Arduino Mega */
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TIMER_PWM_PIN 14 /* Sanguino */
#else
#define TIMER_PWM_PIN 3 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
#endif
// defines for timer1 (16 bits)
#elif defined(IR_USE_TIMER1)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
#if defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
#define TIMER_ENABLE_INTR (TIMSK = _BV(OCIE1A))
#define TIMER_DISABLE_INTR (TIMSK = 0)
#else
#define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
#define TIMER_DISABLE_INTR (TIMSK1 = 0)
#endif
#define TIMER_INTR_NAME TIMER1_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR1A = _BV(WGM11); \
TCCR1B = _BV(WGM13) | _BV(CS10); \
ICR1 = pwmval; \
OCR1A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR1A = 0; \
TCCR1B = _BV(WGM12) | _BV(CS10); \
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT1 = 0; \
})
#if defined(CORE_OC1A_PIN)
#define TIMER_PWM_PIN CORE_OC1A_PIN /* Teensy */
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 11 /* Arduino Mega */
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TIMER_PWM_PIN 13 /* Sanguino */
#else
#define TIMER_PWM_PIN 9 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
#endif
// defines for timer3 (16 bits)
#elif defined(IR_USE_TIMER3)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
#define TIMER_INTR_NAME TIMER3_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR3A = _BV(WGM31); \
TCCR3B = _BV(WGM33) | _BV(CS30); \
ICR3 = pwmval; \
OCR3A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR3A = 0; \
TCCR3B = _BV(WGM32) | _BV(CS30); \
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT3 = 0; \
})
#if defined(CORE_OC3A_PIN)
#define TIMER_PWM_PIN CORE_OC3A_PIN /* Teensy */
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 5 /* Arduino Mega */
#else
#error "Please add OC3A pin number here\n"
#endif
// defines for timer4 (10 bits, high speed option)
#elif defined(IR_USE_TIMER4_HS)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_OVF_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = (1<<PWM4A); \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = (1<<WGM40); \
TCCR4E = 0; \
TC4H = pwmval >> 8; \
OCR4C = pwmval; \
TC4H = (pwmval / 3) >> 8; \
OCR4A = (pwmval / 3) & 255; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = 0; \
TCCR4E = 0; \
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
TC4H = 0; \
TCNT4 = 0; \
})
#if defined(CORE_OC4A_PIN)
#define TIMER_PWM_PIN CORE_OC4A_PIN /* Teensy */
#elif defined(__AVR_ATmega32U4__)
#define TIMER_PWM_PIN 13 /* Leonardo */
#else
#error "Please add OC4A pin number here\n"
#endif
// defines for timer4 (16 bits)
#elif defined(IR_USE_TIMER4)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = _BV(WGM41); \
TCCR4B = _BV(WGM43) | _BV(CS40); \
ICR4 = pwmval; \
OCR4A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(WGM42) | _BV(CS40); \
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT4 = 0; \
})
#if defined(CORE_OC4A_PIN)
#define TIMER_PWM_PIN CORE_OC4A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 6 /* Arduino Mega */
#else
#error "Please add OC4A pin number here\n"
#endif
// defines for timer5 (16 bits)
#elif defined(IR_USE_TIMER5)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
#define TIMER_INTR_NAME TIMER5_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR5A = _BV(WGM51); \
TCCR5B = _BV(WGM53) | _BV(CS50); \
ICR5 = pwmval; \
OCR5A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR5A = 0; \
TCCR5B = _BV(WGM52) | _BV(CS50); \
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT5 = 0; \
})
#if defined(CORE_OC5A_PIN)
#define TIMER_PWM_PIN CORE_OC5A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 46 /* Arduino Mega */
#else
#error "Please add OC5A pin number here\n"
#endif
// defines for special carrier modulator timer
#elif defined(IR_USE_TIMER_CMT)
#define TIMER_RESET ({ \
uint8_t tmp = CMT_MSC; \
CMT_CMD2 = 30; \
})
#define TIMER_ENABLE_PWM CORE_PIN5_CONFIG = PORT_PCR_MUX(2)|PORT_PCR_DSE|PORT_PCR_SRE
#define TIMER_DISABLE_PWM CORE_PIN5_CONFIG = PORT_PCR_MUX(1)|PORT_PCR_DSE|PORT_PCR_SRE
#define TIMER_ENABLE_INTR NVIC_ENABLE_IRQ(IRQ_CMT)
#define TIMER_DISABLE_INTR NVIC_DISABLE_IRQ(IRQ_CMT)
#define TIMER_INTR_NAME cmt_isr
#ifdef ISR
#undef ISR
#endif
#define ISR(f) void f(void)
#if F_BUS == 48000000
#define CMT_PPS_VAL 5
#else
#define CMT_PPS_VAL 2
#endif
#define TIMER_CONFIG_KHZ(val) ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
SIM_SOPT2 |= SIM_SOPT2_PTD7PAD; \
CMT_PPS = CMT_PPS_VAL; \
CMT_CGH1 = 2667 / val; \
CMT_CGL1 = 5333 / val; \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = 0; \
CMT_OC = 0x60; \
CMT_MSC = 0x01; \
})
#define TIMER_CONFIG_NORMAL() ({ \
SIM_SCGC4 |= SIM_SCGC4_CMT; \
CMT_PPS = CMT_PPS_VAL; \
CMT_CGH1 = 1; \
CMT_CGL1 = 1; \
CMT_CMD1 = 0; \
CMT_CMD2 = 30; \
CMT_CMD3 = 0; \
CMT_CMD4 = 19; \
CMT_OC = 0; \
CMT_MSC = 0x03; \
})
#define TIMER_PWM_PIN 5
#else // unknown timer
#error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
#endif
// defines for blinking the LED
#if defined(CORE_LED0_PIN)
#define BLINKLED CORE_LED0_PIN
#define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
#define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define BLINKLED 13
#define BLINKLED_ON() (PORTB |= B10000000)
#define BLINKLED_OFF() (PORTB &= B01111111)
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define BLINKLED 0
#define BLINKLED_ON() (PORTD |= B00000001)
#define BLINKLED_OFF() (PORTD &= B11111110)
#else
#define BLINKLED 13
#define BLINKLED_ON() (PORTB |= B00100000)
#define BLINKLED_OFF() (PORTB &= B11011111)
#endif
#endif

458
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/LICENSE.txt

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

168
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecord/IRrecord.ino

@ -0,0 +1,168 @@
/*
* IRrecord: record and play back IR signals as a minimal
* An IR detector/demodulator must be connected to the input RECV_PIN.
* An IR LED must be connected to the output PWM pin 3.
* A button must be connected to the input BUTTON_PIN; this is the
* send button.
* A visible LED can be connected to STATUS_PIN to provide status.
*
* The logic is:
* If the button is pressed, send the IR code.
* If an IR code is received, record it.
*
* Version 0.11 September, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include </Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.h>
#include </Users/Imogen/Documents/Arduino/libraries/IRremote/IRremote.cpp>
int RECV_PIN = 11;
int BUTTON_PIN = 12;
int STATUS_PIN = 13;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(BUTTON_PIN, INPUT);
pinMode(STATUS_PIN, OUTPUT);
}
// Storage for the recorded code
int codeType = -1; // The type of code
unsigned long codeValue; // The code value if not raw
unsigned int rawCodes[RAWBUF]; // The durations if raw
int codeLen; // The length of the code
int toggle = 0; // The RC5/6 toggle state
// Stores the code for later playback
// Most of this code is just logging
void storeCode(decode_results *results) {
codeType = results->decode_type;
int count = results->rawlen;
if (codeType == UNKNOWN) {
Serial.println("Received unknown code, saving as raw");
codeLen = results->rawlen - 1;
// To store raw codes:
// Drop first value (gap)
// Convert from ticks to microseconds
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
for (int i = 1; i <= codeLen; i++) {
if (i % 2) {
// Mark
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
Serial.print(" m");
}
else {
// Space
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
Serial.print(" s");
}
Serial.print(rawCodes[i - 1], DEC);
}
Serial.println("");
}
else {
if (codeType == NEC) {
Serial.print("Received NEC: ");
if (results->value == REPEAT) {
// Don't record a NEC repeat value as that's useless.
Serial.println("repeat; ignoring.");
return;
}
}
else if (codeType == SONY) {
Serial.print("Received SONY: ");
}
else if (codeType == RC5) {
Serial.print("Received RC5: ");
}
else if (codeType == RC6) {
Serial.print("Received RC6: ");
}
else {
Serial.print("Unexpected codeType ");
Serial.print(codeType, DEC);
Serial.println("");
}
Serial.println(results->value, HEX);
codeValue = results->value;
codeLen = results->bits;
}
}
void sendCode(int repeat) {
if (codeType == NEC) {
if (repeat) {
irsend.sendNEC(REPEAT, codeLen);
Serial.println("Sent NEC repeat");
}
else {
irsend.sendNEC(codeValue, codeLen);
Serial.print("Sent NEC ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == SONY) {
irsend.sendSony(codeValue, codeLen);
Serial.print("Sent Sony ");
Serial.println(codeValue, HEX);
}
else if (codeType == RC5 || codeType == RC6) {
if (!repeat) {
// Flip the toggle bit for a new button press
toggle = 1 - toggle;
}
// Put the toggle bit into the code to send
codeValue = codeValue & ~(1 << (codeLen - 1));
codeValue = codeValue | (toggle << (codeLen - 1));
if (codeType == RC5) {
Serial.print("Sent RC5 ");
Serial.println(codeValue, HEX);
irsend.sendRC5(codeValue, codeLen);
}
else {
irsend.sendRC6(codeValue, codeLen);
Serial.print("Sent RC6 ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == UNKNOWN /* i.e. raw */) {
// Assume 38 KHz
irsend.sendRaw(rawCodes, codeLen, 38);
Serial.println("Sent raw");
}
}
int lastButtonState;
void loop() {
// If button pressed, send the code.
int buttonState = digitalRead(BUTTON_PIN);
if (lastButtonState == HIGH && buttonState == LOW) {
Serial.println("Released");
irrecv.enableIRIn(); // Re-enable receiver
}
if (buttonState) {
Serial.println("Pressed, sending");
digitalWrite(STATUS_PIN, HIGH);
sendCode(lastButtonState == buttonState);
digitalWrite(STATUS_PIN, LOW);
delay(50); // Wait a bit between retransmissions
}
else if (irrecv.decode(&results)) {
digitalWrite(STATUS_PIN, HIGH);
storeCode(&results);
irrecv.resume(); // resume receiver
digitalWrite(STATUS_PIN, LOW);
}
lastButtonState = buttonState;
}

128
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecord/IRremote.h

@ -0,0 +1,128 @@
/*
* IRremote
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
* Edited by Mitra to add new controller SANYO
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
*/
#ifndef IRremote_h
#define IRremote_h
// The following are compile-time library options.
// If you change them, recompile the library.
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
// TEST must be defined for the IRtest unittests to work. It will make some
// methods virtual, which will be slightly slower, which is why it is optional.
// #define DEBUG
// #define TEST
// Results returned from the decoder
class decode_results {
public:
int decode_type; // NEC, SONY, RC5, UNKNOWN
union { // This is used for decoding Panasonic and Sharp data
unsigned int panasonicAddress;
unsigned int sharpAddress;
};
unsigned long value; // Decoded value
int bits; // Number of bits in decoded value
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
int rawlen; // Number of records in rawbuf.
};
// Values for decode_type
#define NEC 1
#define SONY 2
#define RC5 3
#define RC6 4
#define DISH 5
#define SHARP 6
#define PANASONIC 7
#define JVC 8
#define SANYO 9
#define MITSUBISHI 10
#define SAMSUNG 11
#define LG 12
#define UNKNOWN -1
// Decoded value for NEC when a repeat code is received
#define REPEAT 0xffffffff
// main class for receiving IR
class IRrecv
{
public:
IRrecv(int recvpin);
void blink13(int blinkflag);
int decode(decode_results *results);
void enableIRIn();
void resume();
private:
// These are called by decode
int getRClevel(decode_results *results, int *offset, int *used, int t1);
long decodeNEC(decode_results *results);
long decodeSony(decode_results *results);
long decodeSanyo(decode_results *results);
long decodeMitsubishi(decode_results *results);
long decodeRC5(decode_results *results);
long decodeRC6(decode_results *results);
long decodePanasonic(decode_results *results);
long decodeLG(decode_results *results);
long decodeJVC(decode_results *results);
long decodeSAMSUNG(decode_results *results);
long decodeHash(decode_results *results);
int compare(unsigned int oldval, unsigned int newval);
}
;
// Only used for testing; can remove virtual for shorter code
#ifdef TEST
#define VIRTUAL virtual
#else
#define VIRTUAL
#endif
class IRsend
{
public:
IRsend() {}
void sendNEC(unsigned long data, int nbits);
void sendSony(unsigned long data, int nbits);
// Neither Sanyo nor Mitsubishi send is implemented yet
// void sendSanyo(unsigned long data, int nbits);
// void sendMitsubishi(unsigned long data, int nbits);
void sendRaw(unsigned int buf[], int len, int hz);
void sendRC5(unsigned long data, int nbits);
void sendRC6(unsigned long data, int nbits);
void sendDISH(unsigned long data, int nbits);
void sendSharp(unsigned int address, unsigned int command);
void sendSharpRaw(unsigned long data, int nbits);
void sendPanasonic(unsigned int address, unsigned long data);
void sendJVC(unsigned long data, int nbits, int repeat); // *Note instead of sending the REPEAT constant if you want the JVC repeat signal sent, send the original code value and change the repeat argument from 0 to 1. JVC protocol repeats by skipping the header NOT by sending a separate code value like NEC does.
// private:
void sendSAMSUNG(unsigned long data, int nbits);
void enableIROut(int khz);
VIRTUAL void mark(int usec);
VIRTUAL void space(int usec);
}
;
// Some useful constants
#define USECPERTICK 50 // microseconds per clock interrupt tick
#define RAWBUF 100 // Length of raw duration buffer
// Marks tend to be 100us too long, and spaces 100us too short
// when received due to sensor lag.
#define MARK_EXCESS 100
#endif

29
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecvDemo/IRrecvDemo.ino

@ -0,0 +1,29 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
irrecv.resume(); // Receive the next value
}
delay(100);
}

85
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrecvDump/IRrecvDump.ino

@ -0,0 +1,85 @@
/*
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
* LG added by Darryl Smith (based on the JVC protocol)
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.print("Unknown encoding: ");
}
else if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
else if (results->decode_type == PANASONIC) {
Serial.print("Decoded PANASONIC - Address: ");
Serial.print(results->panasonicAddress,HEX);
Serial.print(" Value: ");
}
else if (results->decode_type == LG) {
Serial.print("Decoded LG: ");
}
else if (results->decode_type == JVC) {
Serial.print("Decoded JVC: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
dump(&results);
irrecv.resume(); // Receive the next value
}
}

85
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRrelay/IRrelay.ino

@ -0,0 +1,85 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int RELAY_PIN = 4;
IRrecv irrecv(RECV_PIN);
decode_results results;
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void setup()
{
pinMode(RELAY_PIN, OUTPUT);
pinMode(13, OUTPUT);
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
int on = 0;
unsigned long last = millis();
void loop() {
if (irrecv.decode(&results)) {
// If it's been at least 1/4 second since the last
// IR received, toggle the relay
if (millis() - last > 250) {
on = !on;
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
digitalWrite(13, on ? HIGH : LOW);
dump(&results);
}
last = millis();
irrecv.resume(); // Receive the next value
}
}

25
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRsendDemo/IRsendDemo.ino

@ -0,0 +1,25 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
IRsend irsend;
void setup()
{
Serial.begin(9600);
}
void loop() {
if (Serial.read() != -1) {
for (int i = 0; i < 3; i++) {
irsend.sendSony(0xa90, 12); // Sony TV power code
delay(40);
}
}
}

190
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRtest/IRtest.ino

@ -0,0 +1,190 @@
/*
* IRremote: IRtest unittest
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
* You must then recompile the library by removing IRremote.o and restarting
* the arduino IDE.
*/
#include <IRremote.h>
#include <IRremoteInt.h>
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
IRrecv irrecv(0);
decode_results results;
class IRsendDummy :
public IRsend
{
public:
// For testing, just log the marks/spaces
#define SENDLOG_LEN 128
int sendlog[SENDLOG_LEN];
int sendlogcnt;
IRsendDummy() :
IRsend() {
}
void reset() {
sendlogcnt = 0;
}
void mark(int time) {
sendlog[sendlogcnt] = time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
void space(int time) {
sendlog[sendlogcnt] = -time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
// Copies the dummy buf into the interrupt buf
void useDummyBuf() {
int last = SPACE;
irparams.rcvstate = STATE_STOP;
irparams.rawlen = 1; // Skip the gap
for (int i = 0 ; i < sendlogcnt; i++) {
if (sendlog[i] < 0) {
if (last == MARK) {
// New space
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
last = SPACE;
}
else {
// More space
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
}
}
else if (sendlog[i] > 0) {
if (last == SPACE) {
// New mark
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
last = MARK;
}
else {
// More mark
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
}
}
}
if (irparams.rawlen % 2) {
irparams.rawlen--; // Remove trailing space
}
}
};
IRsendDummy irsenddummy;
void verify(unsigned long val, int bits, int type) {
irsenddummy.useDummyBuf();
irrecv.decode(&results);
Serial.print("Testing ");
Serial.print(val, HEX);
if (results.value == val && results.bits == bits && results.decode_type == type) {
Serial.println(": OK");
}
else {
Serial.println(": Error");
dump(&results);
}
}
void testNEC(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendNEC(val, bits);
verify(val, bits, NEC);
}
void testSony(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendSony(val, bits);
verify(val, bits, SONY);
}
void testRC5(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC5(val, bits);
verify(val, bits, RC5);
}
void testRC6(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC6(val, bits);
verify(val, bits, RC6);
}
void test() {
Serial.println("NEC tests");
testNEC(0x00000000, 32);
testNEC(0xffffffff, 32);
testNEC(0xaaaaaaaa, 32);
testNEC(0x55555555, 32);
testNEC(0x12345678, 32);
Serial.println("Sony tests");
testSony(0xfff, 12);
testSony(0x000, 12);
testSony(0xaaa, 12);
testSony(0x555, 12);
testSony(0x123, 12);
Serial.println("RC5 tests");
testRC5(0xfff, 12);
testRC5(0x000, 12);
testRC5(0xaaa, 12);
testRC5(0x555, 12);
testRC5(0x123, 12);
Serial.println("RC6 tests");
testRC6(0xfffff, 20);
testRC6(0x00000, 20);
testRC6(0xaaaaa, 20);
testRC6(0x55555, 20);
testRC6(0x12345, 20);
}
void setup()
{
Serial.begin(9600);
test();
}
void loop() {
}

290
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/IRtest2/IRtest2.ino

@ -0,0 +1,290 @@
/*
* Test send/receive functions of IRremote, using a pair of Arduinos.
*
* Arduino #1 should have an IR LED connected to the send pin (3).
* Arduino #2 should have an IR detector/demodulator connected to the
* receive pin (11) and a visible LED connected to pin 3.
*
* The cycle:
* Arduino #1 will wait 2 seconds, then run through the tests.
* It repeats this forever.
* Arduino #2 will wait for at least one second of no signal
* (to synchronize with #1). It will then wait for the same test
* signals. It will log all the status to the serial port. It will
* also indicate status through the LED, which will flash each time a test
* is completed. If there is an error, it will light up for 5 seconds.
*
* The test passes if the LED flashes 19 times, pauses, and then repeats.
* The test fails if the LED lights for 5 seconds.
*
* The test software automatically decides which board is the sender and which is
* the receiver by looking for an input on the send pin, which will indicate
* the sender. You should hook the serial port to the receiver for debugging.
*
* Copyright 2010 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int LED_PIN = 3;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
#define RECEIVER 1
#define SENDER 2
#define ERROR 3
int mode;
void setup()
{
Serial.begin(9600);
// Check RECV_PIN to decide if we're RECEIVER or SENDER
if (digitalRead(RECV_PIN) == HIGH) {
mode = RECEIVER;
irrecv.enableIRIn();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
Serial.println("Receiver mode");
}
else {
mode = SENDER;
Serial.println("Sender mode");
}
}
// Wait for the gap between tests, to synchronize with
// the sender.
// Specifically, wait for a signal followed by a gap of at last gap ms.
void waitForGap(int gap) {
Serial.println("Waiting for gap");
while (1) {
while (digitalRead(RECV_PIN) == LOW) {
}
unsigned long time = millis();
while (digitalRead(RECV_PIN) == HIGH) {
if (millis() - time > gap) {
return;
}
}
}
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
// Test send or receive.
// If mode is SENDER, send a code of the specified type, value, and bits
// If mode is RECEIVER, receive a code and verify that it is of the
// specified type, value, and bits. For success, the LED is flashed;
// for failure, the mode is set to ERROR.
// The motivation behind this method is that the sender and the receiver
// can do the same test calls, and the mode variable indicates whether
// to send or receive.
void test(char *label, int type, unsigned long value, int bits) {
if (mode == SENDER) {
Serial.println(label);
if (type == NEC) {
irsend.sendNEC(value, bits);
}
else if (type == SONY) {
irsend.sendSony(value, bits);
}
else if (type == RC5) {
irsend.sendRC5(value, bits);
}
else if (type == RC6) {
irsend.sendRC6(value, bits);
}
else {
Serial.print(label);
Serial.println("Bad type!");
}
delay(200);
}
else if (mode == RECEIVER) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
if (type == results.decode_type && value == results.value && bits == results.bits) {
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
else {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
}
}
}
// Test raw send or receive. This is similar to the test method,
// except it send/receives raw data.
void testRaw(char *label, unsigned int *rawbuf, int rawlen) {
if (mode == SENDER) {
Serial.println(label);
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
delay(200);
}
else if (mode == RECEIVER ) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
// Received length has extra first element for gap
if (rawlen != results.rawlen - 1) {
Serial.print("Bad raw length ");
Serial.println(results.rawlen, DEC);
mode = ERROR;
return;
}
for (int i = 0; i < rawlen; i++) {
long got = results.rawbuf[i+1] * USECPERTICK;
// Adjust for extra duration of marks
if (i % 2 == 0) {
got -= MARK_EXCESS;
}
else {
got += MARK_EXCESS;
}
// See if close enough, within 25%
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
return;
}
}
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
}
// This is the raw data corresponding to NEC 0x12345678
unsigned int sendbuf[] = { /* NEC format */
9000, 4500,
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
560};
void loop() {
if (mode == SENDER) {
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
}
else if (mode == RECEIVER) {
waitForGap(1000);
}
else if (mode == ERROR) {
// Light up for 5 seconds for error
digitalWrite(LED_PIN, HIGH);
delay(5000);
digitalWrite(LED_PIN, LOW);
mode = RECEIVER; // Try again
return;
}
// The test suite.
test("SONY1", SONY, 0x123, 12);
test("SONY2", SONY, 0x000, 12);
test("SONY3", SONY, 0xfff, 12);
test("SONY4", SONY, 0x12345, 20);
test("SONY5", SONY, 0x00000, 20);
test("SONY6", SONY, 0xfffff, 20);
test("NEC1", NEC, 0x12345678, 32);
test("NEC2", NEC, 0x00000000, 32);
test("NEC3", NEC, 0xffffffff, 32);
test("NEC4", NEC, REPEAT, 32);
test("RC51", RC5, 0x12345678, 32);
test("RC52", RC5, 0x0, 32);
test("RC53", RC5, 0xffffffff, 32);
test("RC61", RC6, 0x12345678, 32);
test("RC62", RC6, 0x0, 32);
test("RC63", RC6, 0xffffffff, 32);
// Tests of raw sending and receiving.
// First test sending raw and receiving raw.
// Then test sending raw and receiving decoded NEC
// Then test sending NEC and receiving raw
testRaw("RAW1", sendbuf, 67);
if (mode == SENDER) {
testRaw("RAW2", sendbuf, 67);
test("RAW3", NEC, 0x12345678, 32);
}
else {
test("RAW2", NEC, 0x12345678, 32);
testRaw("RAW3", sendbuf, 67);
}
}

29
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/examples/JVCPanasonicSendDemo/JVCPanasonicSendDemo.ino

@ -0,0 +1,29 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
#define PanasonicPower 0x100BCBD // Panasonic Power button
#define JVCPower 0xC5E8
IRsend irsend;
void setup()
{
}
void loop() {
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
delayMicroseconds(50);
}

51
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/keywords.txt

@ -0,0 +1,51 @@
#######################################
# Syntax Coloring Map For IRremote
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
decode_results KEYWORD1
IRrecv KEYWORD1
IRsend KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
blink13 KEYWORD2
decode KEYWORD2
enableIRIn KEYWORD2
resume KEYWORD2
enableIROut KEYWORD2
sendNEC KEYWORD2
sendSony KEYWORD2
sendSanyo KEYWORD2
sendMitsubishi KEYWORD2
sendRaw KEYWORD2
sendRC5 KEYWORD2
sendRC6 KEYWORD2
sendDISH KEYWORD2
sendSharp KEYWORD2
sendSharpRaw KEYWORD2
sendPanasonic KEYWORD2
sendJVC KEYWORD2
#
#######################################
# Constants (LITERAL1)
#######################################
NEC LITERAL1
SONY LITERAL1
SANYO LITERAL1
MITSUBISHI LITERAL1
RC5 LITERAL1
RC6 LITERAL1
DISH LITERAL1
SHARP LITERAL1
PANASONIC LITERAL1
JVC LITERAL1
UNKNOWN LITERAL1
REPEAT LITERAL1

14
elegoo-kit-lessons/Lesson 13 IR Receiver Module/IRremote/readme

@ -0,0 +1,14 @@
This is the IRremote library for the Arduino.
To download from github (http://github.com/shirriff/Arduino-IRremote), click on the "Downloads" link in the upper right, click "Download as zip", and get a zip file. Unzip it and rename the directory shirriff-Arduino-IRremote-nnn to IRremote
To install, move the downloaded IRremote directory to:
arduino-1.x/libraries/IRremote
where arduino-1.x is your Arduino installation directory
After installation you should have files such as:
arduino-1.x/libraries/IRremote/IRremote.cpp
For details on the library see the Wiki on github or the blog post http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
Copyright 2009-2012 Ken Shirriff

BIN
elegoo-kit-lessons/Lesson 14 LCD Display/.DS_Store

Binary file not shown.

63
elegoo-kit-lessons/Lesson 14 LCD Display/HelloWorld/HelloWorld.ino

@ -0,0 +1,63 @@
//www.elegoo.com
//2016.12.9
/*
LiquidCrystal Library - Hello World
Demonstrates the use a 16x2 LCD display. The LiquidCrystal
library works with all LCD displays that are compatible with the
Hitachi HD44780 driver. There are many of them out there, and you
can usually tell them by the 16-pin interface.
This sketch prints "Hello World!" to the LCD
and shows the time.
The circuit:
* LCD RS pin to digital pin 7
* LCD Enable pin to digital pin 8
* LCD D4 pin to digital pin 9
* LCD D5 pin to digital pin 10
* LCD D6 pin to digital pin 11
* LCD D7 pin to digital pin 12
* LCD R/W pin to ground
* LCD VSS pin to ground
* LCD VCC pin to 5V
* 10K resistor:
* ends to +5V and ground
* wiper to LCD VO pin (pin 3)
Library originally added 18 Apr 2008
by David A. Mellis
library modified 5 Jul 2009
by Limor Fried (http://www.ladyada.net)
example added 9 Jul 2009
by Tom Igoe
modified 22 Nov 2010
by Tom Igoe
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
*/
// include the library code:
#include <LiquidCrystal.h>
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print("Hello, World!");
}
void loop() {
// set the cursor to column 0, line 1
// (note: line 1 is the second row, since counting begins with 0):
lcd.setCursor(0, 1);
// print the number of seconds since reset:
lcd.print(millis() / 1000);
}

BIN
elegoo-kit-lessons/Lesson 14 LCD Display/LiquidCrystal.zip

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 15 Thermometer/LiquidCrystal.zip

Binary file not shown.

36
elegoo-kit-lessons/Lesson 15 Thermometer/Thermometer/Thermometer.ino

@ -0,0 +1,36 @@
//www.elegoo.com
//2016.12.9
#include <LiquidCrystal.h>
int tempPin = 0;
// BS E D4 D5 D6 D7
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
void setup()
{
lcd.begin(16, 2);
}
void loop()
{
int tempReading = analogRead(tempPin);
// This is OK
double tempK = log(10000.0 * ((1024.0 / tempReading - 1)));
tempK = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * tempK * tempK )) * tempK ); // Temp Kelvin
float tempC = tempK - 273.15; // Convert Kelvin to Celcius
float tempF = (tempC * 9.0)/ 5.0 + 32.0; // Convert Celcius to Fahrenheit
/* replaced
float tempVolts = tempReading * 5.0 / 1024.0;
float tempC = (tempVolts - 0.5) * 10.0;
float tempF = tempC * 9.0 / 5.0 + 32.0;
*/
// Display Temperature in C
lcd.setCursor(0, 0);
lcd.print("Temp C ");
// Display Temperature in F
//lcd.print("Temp F ");
lcd.setCursor(6, 0);
// Display Temperature in C
lcd.print(tempC);
// Display Temperature in F
//lcd.print(tempF);
delay(500);
}

37
elegoo-kit-lessons/Lesson 16 Eight LED with 74HC595/Eight_LED_with_74HC595_Flash_LED/Eight_LED_with_74HC595_Flash_LED.ino

@ -0,0 +1,37 @@
//www.elegoo.com
//2016.12.9
int tDelay = 100;
int latchPin = 11; // (11) ST_CP [RCK] on 74HC595
int clockPin = 9; // (9) SH_CP [SCK] on 74HC595
int dataPin = 12; // (12) DS [S1] on 74HC595
byte leds = 0;
void updateShiftRegister()
{
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, leds);
digitalWrite(latchPin, HIGH);
}
void setup()
{
pinMode(latchPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
}
void loop()
{
leds = 0;
updateShiftRegister();
delay(tDelay);
for (int i = 0; i < 8; i++)
{
bitSet(leds, i);
updateShiftRegister();
delay(tDelay);
}
}

48
elegoo-kit-lessons/Lesson 17 The Serial Monitor/The_Serial_Monitor/The_Serial_Monitor.ino

@ -0,0 +1,48 @@
//www.elegoo.com
//2016.12.9
int latchPin = 11;
int clockPin = 9;
int dataPin = 12;
byte leds = 0;
void updateShiftRegister()
{
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, leds);
digitalWrite(latchPin, HIGH);
}
void setup()
{
pinMode(latchPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
updateShiftRegister();
Serial.begin(9600);
while (! Serial); // Wait untilSerial is ready - Leonardo
Serial.println("Enter LED Number 0 to 7 or 'x' to clear");
}
void loop()
{
if (Serial.available())
{
char ch = Serial.read();
if (ch >= '0' && ch <= '7')
{
int led = ch - '0';
bitSet(leds, led);
updateShiftRegister();
Serial.print("Turned on LED ");
Serial.println(led);
}
if (ch == 'x')
{
leds = 0;
updateShiftRegister();
Serial.println("Cleared");
}
}
}

36
elegoo-kit-lessons/Lesson 18 Photocell/Photocell/Photocell.ino

@ -0,0 +1,36 @@
//www.elegoo.com
//2016.12.9
int lightPin = 0;
int latchPin = 11;
int clockPin = 9;
int dataPin = 12;
int leds = 0;
void setup()
{
pinMode(latchPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
}
void updateShiftRegister()
{
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, leds);
digitalWrite(latchPin, HIGH);
}
void loop()
{
int reading = analogRead(lightPin);
int numLEDSLit = reading / 57; //1023 / 9 / 2
if (numLEDSLit > 8) numLEDSLit = 8;
leds = 0; // no LEDs lit to start
for (int i = 0; i < numLEDSLit; i++)
{
leds = leds + (1 << i); // sets the i'th bit
}
updateShiftRegister();
}

55
elegoo-kit-lessons/Lesson 19 74HC595 And Segment Display/_75hc/_75hc.ino

@ -0,0 +1,55 @@
//www.elegoo.com
//2016.12.12
// define the LED digit patterns, from 0 - 9
// 1 = LED on, 0 = LED off, in this order:
// 74HC595 pin Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7
// Mapping to a,b,c,d,e,f,g of Seven-Segment LED
byte seven_seg_digits[10] = { B11111100, // = 0
B01100000, // = 1
B11011010, // = 2
B11110010, // = 3
B01100110, // = 4
B10110110, // = 5
B10111110, // = 6
B11100000, // = 7
B11111110, // = 8
B11100110 // = 9
};
// connect to the ST_CP of 74HC595 (pin 3,latch pin)
int latchPin = 3;
// connect to the SH_CP of 74HC595 (pin 4, clock pin)
int clockPin = 4;
// connect to the DS of 74HC595 (pin 2)
int dataPin = 2;
void setup() {
// Set latchPin, clockPin, dataPin as output
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);
}
// display a number on the digital segment display
void sevenSegWrite(byte digit) {
// set the latchPin to low potential, before sending data
digitalWrite(latchPin, LOW);
// the original data (bit pattern)
shiftOut(dataPin, clockPin, LSBFIRST, seven_seg_digits[digit]);
// set the latchPin to high potential, after sending data
digitalWrite(latchPin, HIGH);
}
void loop() {
// count from 9 to 0
for (byte digit = 10; digit > 0; --digit) {
delay(1000);
sevenSegWrite(digit - 1);
}
// suspend 4 seconds
delay(3000);
}

56
elegoo-kit-lessons/Lesson 20 Four Digital Seven Segment Display/Four_Digital/Four_Digital.ino

@ -0,0 +1,56 @@
//www.elegoo.com
//2016.12.12
int latch=9; //74HC595 pin 9 STCP
int clock=10; //74HC595 pin 10 SHCP
int data=8; //74HC595 pin 8 DS
unsigned char table[]=
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c
,0x39,0x5e,0x79,0x71,0x00};
void setup() {
pinMode(latch,OUTPUT);
pinMode(clock,OUTPUT);
pinMode(data,OUTPUT);
}
void Display(unsigned char num)
{
digitalWrite(latch,LOW);
shiftOut(data,clock,MSBFIRST,table[num]);
digitalWrite(latch,HIGH);
}
void loop() {
Display(1);
delay(500);
Display(2);
delay(500);
Display(3);
delay(500);
Display(4);
delay(500);
Display(5);
delay(500);
Display(6);
delay(500);
Display(7);
delay(500);
Display(8);
delay(500);
Display(9);
delay(500);
Display(10);
delay(500);
Display(11);
delay(500);
Display(12);
delay(500);
Display(13);
delay(500);
Display(14);
delay(500);
Display(15);
delay(500);
}

74
elegoo-kit-lessons/Lesson 21 DC Motors/DC_Motor/DC_Motor.ino

@ -0,0 +1,74 @@
//www.elegoo.com
//2016.12.12
/************************
Exercise the motor using
the L293D chip
************************/
#define ENABLE 5
#define DIRA 3
#define DIRB 4
int i;
void setup() {
//---set pin direction
pinMode(ENABLE,OUTPUT);
pinMode(DIRA,OUTPUT);
pinMode(DIRB,OUTPUT);
Serial.begin(9600);
}
void loop() {
//---back and forth example
Serial.println("One way, then reverse");
digitalWrite(ENABLE,HIGH); // enable on
for (i=0;i<5;i++) {
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(500);
digitalWrite(DIRA,LOW); //reverse
digitalWrite(DIRB,HIGH);
delay(500);
}
digitalWrite(ENABLE,LOW); // disable
delay(2000);
Serial.println("fast Slow example");
//---fast/slow stop example
digitalWrite(ENABLE,HIGH); //enable on
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(3000);
digitalWrite(ENABLE,LOW); //slow stop
delay(1000);
digitalWrite(ENABLE,HIGH); //enable on
digitalWrite(DIRA,LOW); //one way
digitalWrite(DIRB,HIGH);
delay(3000);
digitalWrite(DIRA,LOW); //fast stop
delay(2000);
Serial.println("PWM full then slow");
//---PWM example, full speed then slow
analogWrite(ENABLE,255); //enable on
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(2000);
analogWrite(ENABLE,180); //half speed
delay(2000);
analogWrite(ENABLE,128); //half speed
delay(2000);
analogWrite(ENABLE,50); //half speed
delay(2000);
analogWrite(ENABLE,128); //half speed
delay(2000);
analogWrite(ENABLE,180); //half speed
delay(2000);
analogWrite(ENABLE,255); //half speed
delay(2000);
digitalWrite(ENABLE,LOW); //all done
delay(10000);
}

49
elegoo-kit-lessons/Lesson 22 Relay/Relay/Relay.ino

@ -0,0 +1,49 @@
//www.elegoo.com
//2016.12.12
/************************
Exercise the motor using
the L293D chip
************************/
#define ENABLE 5
#define DIRA 3
#define DIRB 4
int i;
void setup() {
//---set pin direction
pinMode(ENABLE,OUTPUT);
pinMode(DIRA,OUTPUT);
pinMode(DIRB,OUTPUT);
Serial.begin(9600);
}
void loop() {
//---back and forth example
Serial.println("One way, then reverse");
digitalWrite(ENABLE,HIGH); // enable on
for (i=0;i<5;i++) {
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(750);
digitalWrite(DIRA,LOW); //reverse
digitalWrite(DIRB,HIGH);
delay(750);
}
digitalWrite(ENABLE,LOW); // disable
delay(3000);
for (i=0;i<5;i++) {
digitalWrite(DIRA,HIGH); //one way
digitalWrite(DIRB,LOW);
delay(750);
digitalWrite(DIRA,LOW); //reverse
digitalWrite(DIRB,HIGH);
delay(750);
}
digitalWrite(ENABLE,LOW); // disable
delay(3000);
}

BIN
elegoo-kit-lessons/Lesson 23 Stepper Motor/Stepper.zip

Binary file not shown.

40
elegoo-kit-lessons/Lesson 23 Stepper Motor/stepper_oneRevolution/stepper_oneRevolution.ino

@ -0,0 +1,40 @@
//www.elegoo.com
//2016.12.12
/*
Stepper Motor Control - one revolution
This program drives a unipolar or bipolar stepper motor.
The motor is attached to digital pins 8 - 11 of the Arduino.
The motor should revolve one revolution in one direction, then
one revolution in the other direction.
*/
#include <Stepper.h>
const int stepsPerRevolution = 1500; // change this to fit the number of steps per revolution
// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);
void setup() {
// set the speed at 20 rpm:
myStepper.setSpeed(20);
// initialize the serial port:
Serial.begin(9600);
}
void loop() {
// step one revolution in one direction:
Serial.println("clockwise");
myStepper.step(stepsPerRevolution);
delay(500);
// step one revolution in the other direction:
Serial.println("counterclockwise");
myStepper.step(-stepsPerRevolution);
delay(500);
}

BIN
elegoo-kit-lessons/Lesson 24 Controlling Stepper Motor With Remote/IRremote.zip

Binary file not shown.

BIN
elegoo-kit-lessons/Lesson 24 Controlling Stepper Motor With Remote/Stepper.zip

Binary file not shown.

58
elegoo-kit-lessons/Lesson 24 Controlling Stepper Motor With Remote/With_Remote/With_Remote.ino

@ -0,0 +1,58 @@
//www.elegoo.com
//2016.12.12
#include "Stepper.h"
#include "IRremote.h"
/*----- Variables, Pins -----*/
#define STEPS 32 // Number of steps per revolution of Internal shaft
int Steps2Take; // 2048 = 1 Revolution
int receiver = 12; // Signal Pin of IR receiver to Arduino Digital Pin 6
/*-----( Declare objects )-----*/
// Setup of proper sequencing for Motor Driver Pins
// In1, In2, In3, In4 in the sequence 1-3-2-4
Stepper small_stepper(STEPS, 8, 10, 9, 11);
IRrecv irrecv(receiver); // create instance of 'irrecv'
decode_results results; // create instance of 'decode_results'
void setup()
{
irrecv.enableIRIn(); // Start the receiver
}
void loop()
{
if (irrecv.decode(&results)) // have we received an IR signal?
{
switch(results.value)
{
case 0xFFA857: // VOL+ button pressed
small_stepper.setSpeed(500); //Max seems to be 500
Steps2Take = 2048; // Rotate CW
small_stepper.step(Steps2Take);
delay(2000);
break;
case 0xFF629D: // VOL- button pressed
small_stepper.setSpeed(500);
Steps2Take = -2048; // Rotate CCW
small_stepper.step(Steps2Take);
delay(2000);
break;
}
irrecv.resume(); // receive the next value
digitalWrite(8, LOW);
digitalWrite(9, LOW);
digitalWrite(10, LOW);
digitalWrite(11, LOW);
}
}/* --end main loop -- */

83
elegoo-kit-lessons/Lesson 4 RGB LED/RGB_LED/RGB_LED.ino

@ -0,0 +1,83 @@
//www.elegoo.com
//2016.12.8
// Define Pins
#define BLUE 3
#define GREEN 5
#define RED 6
void setup()
{
pinMode(RED, OUTPUT);
pinMode(GREEN, OUTPUT);
pinMode(BLUE, OUTPUT);
digitalWrite(RED, HIGH);
digitalWrite(GREEN, LOW);
digitalWrite(BLUE, LOW);
}
// define variables
int redValue;
int greenValue;
int blueValue;
// main loop
void loop()
{
#define delayTime 10 // fading time between colors
redValue = 255; // choose a value between 1 and 255 to change the color.
greenValue = 0;
blueValue = 0;
// this is unnecessary as we've either turned on RED in SETUP
// or in the previous loop ... regardless, this turns RED off
// analogWrite(RED, 0);
// delay(1000);
for(int i = 0; i < 255; i += 1) // fades out red bring green full when i=255
{
redValue -= 1;
greenValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(RED, 255 - redValue);
// analogWrite(GREEN, 255 - greenValue);
analogWrite(RED, redValue);
analogWrite(GREEN, greenValue);
delay(delayTime);
}
redValue = 0;
greenValue = 255;
blueValue = 0;
for(int i = 0; i < 255; i += 1) // fades out green bring blue full when i=255
{
greenValue -= 1;
blueValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(GREEN, 255 - greenValue);
// analogWrite(BLUE, 255 - blueValue);
analogWrite(GREEN, greenValue);
analogWrite(BLUE, blueValue);
delay(delayTime);
}
redValue = 0;
greenValue = 0;
blueValue = 255;
for(int i = 0; i < 255; i += 1) // fades out blue bring red full when i=255
{
// The following code has been rearranged to match the other two similar sections
blueValue -= 1;
redValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(BLUE, 255 - blueValue);
// analogWrite(RED, 255 - redValue);
analogWrite(BLUE, blueValue);
analogWrite(RED, redValue);
delay(delayTime);
}
}

27
elegoo-kit-lessons/Lesson 5 Digital Inputs/Digital_Inputs/Digital_Inputs.ino

@ -0,0 +1,27 @@
//www.elegoo.com
//2016.12.08
int ledPin = 5;
int buttonApin = 9;
int buttonBpin = 8;
byte leds = 0;
void setup()
{
pinMode(ledPin, OUTPUT);
pinMode(buttonApin, INPUT_PULLUP);
pinMode(buttonBpin, INPUT_PULLUP);
}
void loop()
{
if (digitalRead(buttonApin) == LOW)
{
digitalWrite(ledPin, HIGH);
}
if (digitalRead(buttonBpin) == LOW)
{
digitalWrite(ledPin, LOW);
}
}

31
elegoo-kit-lessons/Lesson 6 Making Sounds/active/active.ino

@ -0,0 +1,31 @@
//www.elegoo.com
//2016.12.08
int buzzer = 12;//the pin of the active buzzer
void setup()
{
pinMode(buzzer,OUTPUT);//initialize the buzzer pin as an output
}
void loop()
{
unsigned char i;
while(1)
{
//output an frequency
for(i=0;i<80;i++)
{
digitalWrite(buzzer,HIGH);
delay(1);//wait for 1ms
digitalWrite(buzzer,LOW);
delay(1);//wait for 1ms
}
//output another frequency
for(i=0;i<100;i++)
{
digitalWrite(buzzer,HIGH);
delay(2);//wait for 2ms
digitalWrite(buzzer,LOW);
delay(2);//wait for 2ms
}
}
}

26
elegoo-kit-lessons/Lesson 7 Passive Buzzer/passive_buzzer/passive_buzzer.ino

@ -0,0 +1,26 @@
//www.elegoo.com
//2016.12.08
#include "pitches.h"
// notes in the melody:
int melody[] = {
NOTE_C5, NOTE_D5, NOTE_E5, NOTE_F5, NOTE_G5, NOTE_A5, NOTE_B5, NOTE_C6};
int duration = 500; // 500 miliseconds
void setup() {
}
void loop() {
for (int thisNote = 0; thisNote < 8; thisNote++) {
// pin8 output the voice, every scale is 0.5 sencond
tone(8, melody[thisNote], duration);
// Output the voice after several minutes
delay(1000);
}
// restart after two seconds
delay(2000);
}

BIN
elegoo-kit-lessons/Lesson 7 Passive Buzzer/pitches.zip

Binary file not shown.

26
elegoo-kit-lessons/Lesson 8 Ball Switch/Ball_Switch/Ball_Switch.ino

@ -0,0 +1,26 @@
//www.elegoo.com
//2016.12.08
/*****************************************/
const int ledPin = 13;//the led attach to
void setup()
{
pinMode(ledPin,OUTPUT);//initialize the ledPin as an output
pinMode(2,INPUT);
digitalWrite(2, HIGH);
}
/******************************************/
void loop()
{
int digitalVal = digitalRead(2);
if(HIGH == digitalVal)
{
digitalWrite(ledPin,LOW);//turn the led off
}
else
{
digitalWrite(ledPin,HIGH);//turn the led on
}
}
/**********************************************/

BIN
elegoo-kit-lessons/Lesson 9 Servo/.DS_Store

Binary file not shown.

25
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/README.adoc

@ -0,0 +1,25 @@
= Servo Library for Arduino =
This library allows an Arduino board to control RC (hobby) servo motors.
For more information about this library please visit us at
http://www.arduino.cc/en/Reference/Servo
== License ==
Copyright (c) 2013 Arduino LLC. All right reserved.
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

27
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Knob/Knob.ino

@ -0,0 +1,27 @@
/*
Controlling a servo position using a potentiometer (variable resistor)
by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>
modified on 8 Nov 2013
by Scott Fitzgerald
http://www.arduino.cc/en/Tutorial/Knob
*/
#include <Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup() {
myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop() {
val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and 1023)
val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180)
myservo.write(val); // sets the servo position according to the scaled value
delay(15); // waits for the servo to get there
}

32
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/examples/Sweep/Sweep.ino

@ -0,0 +1,32 @@
/* Sweep
by BARRAGAN <http://barraganstudio.com>
This example code is in the public domain.
modified 8 Nov 2013
by Scott Fitzgerald
http://www.arduino.cc/en/Tutorial/Sweep
*/
#include <Servo.h>
Servo myservo; // create servo object to control a servo
// twelve servo objects can be created on most boards
int pos = 0; // variable to store the servo position
void setup() {
myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop() {
for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position
}
for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position
}
}

24
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/keywords.txt

@ -0,0 +1,24 @@
#######################################
# Syntax Coloring Map Servo
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
Servo KEYWORD1 Servo
#######################################
# Methods and Functions (KEYWORD2)
#######################################
attach KEYWORD2
detach KEYWORD2
write KEYWORD2
read KEYWORD2
attached KEYWORD2
writeMicroseconds KEYWORD2
readMicroseconds KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################

9
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/library.properties

@ -0,0 +1,9 @@
name=Servo
version=1.1.2
author=Michael Margolis, Arduino
maintainer=Arduino <info@arduino.cc>
sentence=Allows Arduino/Genuino boards to control a variety of servo motors.
paragraph=This library can control a great number of servos.<br />It makes careful use of timers: the library can control 12 servos using only 1 timer.<br />On the Arduino Due you can control up to 60 servos.<br />
category=Device Control
url=http://www.arduino.cc/en/Reference/Servo
architectures=avr,sam,samd

112
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/Servo.h

@ -0,0 +1,112 @@
/*
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing
the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently
written using the write() method.
Note that analogWrite of PWM on pins associated with the timer are
disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two
timers, 48 servos will use four.
The sequence used to sieze timers is defined in timers.h
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#ifndef Servo_h
#define Servo_h
#include <inttypes.h>
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*/
// Architecture specific include
#if defined(ARDUINO_ARCH_AVR)
#include "avr/ServoTimers.h"
#elif defined(ARDUINO_ARCH_SAM)
#include "sam/ServoTimers.h"
#elif defined(ARDUINO_ARCH_SAMD)
#include "samd/ServoTimers.h"
#else
#error "This library only supports boards with an AVR, SAM or SAMD processor."
#endif
#define Servo_VERSION 2 // software version of this library
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
#define INVALID_SERVO 255 // flag indicating an invalid servo index
typedef struct {
uint8_t nbr :6 ; // a pin number from 0 to 63
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t ;
typedef struct {
ServoPin_t Pin;
volatile unsigned int ticks;
} servo_t;
class Servo
{
public:
Servo();
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
void detach();
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servoIndex; // index into the channel data for this servo
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
};
#endif

317
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/Servo.cpp

@ -0,0 +1,317 @@
/*
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ARDUINO_ARCH_AVR)
#include <avr/interrupt.h>
#include <Arduino.h>
#include "Servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
uint8_t ServoCount = 0; // the total number of attached servos
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
if( Channel[timer] < 0 )
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
}
Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif
#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif
#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if(timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
#if defined (_useTimer3)
if(timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__)
TIFR |= _BV(OCF3A); // clear any pending interrupts;
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#if defined (_useTimer4)
if(timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
}
#endif
#if defined (_useTimer5)
if(timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
}
#endif
}
static void finISR(timer16_Sequence_t timer)
{
//disable use of the given timer
#if defined WIRING // Wiring
if(timer == _timer1) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#else
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#endif
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if(timer == _timer3) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#else
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#endif
timerDetach(TIMER3OUTCOMPAREA_INT);
}
#else
//For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if( ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO ; // too many servos
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
if(this->servoIndex < MAX_SERVOS ) {
pinMode( pin, OUTPUT) ; // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false)
initISR(timer);
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex ;
}
void Servo::detach()
{
servos[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
if(value < MIN_PULSE_WIDTH)
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < 0) value = 0;
if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN();
else if( value > SERVO_MAX() )
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
uint8_t oldSREG = SREG;
cli();
servos[channel].ticks = value;
SREG = oldSREG;
}
}
int Servo::read() // return the value as degrees
{
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if( this->servoIndex != INVALID_SERVO )
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive ;
}
#endif // ARDUINO_ARCH_AVR

59
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/avr/ServoTimers.h

@ -0,0 +1,59 @@
/*
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*/
/**
* AVR Only definitions
* --------------------
*/
// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
#define _useTimer1
#define _useTimer3
#define _useTimer4
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t;
#elif defined(__AVR_ATmega32U4__)
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t;
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t;
#elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t;
#else // everything else
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t;
#endif

283
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/Servo.cpp

@ -0,0 +1,283 @@
/*
Copyright (c) 2013 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ARDUINO_ARCH_SAM)
#include <Arduino.h>
#include <Servo.h>
#define usToTicks(_us) (( clockCyclesPerMicrosecond() * _us) / 32) // converts microseconds to tick
#define ticksToUs(_ticks) (( (unsigned)_ticks * 32)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
static servo_t servos[MAX_SERVOS]; // static array of servo structures
uint8_t ServoCount = 0; // the total number of attached servos
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
//------------------------------------------------------------------------------
/// Interrupt handler for the TC0 channel 1.
//------------------------------------------------------------------------------
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel);
#if defined (_useTimer1)
void HANDLER_FOR_TIMER1(void) {
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
}
#endif
#if defined (_useTimer2)
void HANDLER_FOR_TIMER2(void) {
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
}
#endif
#if defined (_useTimer3)
void HANDLER_FOR_TIMER3(void) {
Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
}
#endif
#if defined (_useTimer4)
void HANDLER_FOR_TIMER4(void) {
Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
}
#endif
#if defined (_useTimer5)
void HANDLER_FOR_TIMER5(void) {
Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
}
#endif
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel)
{
// clear interrupt
tc->TC_CHANNEL[channel].TC_SR;
if (Channel[timer] < 0) {
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer
} else {
if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true) {
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
}
}
Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) { // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( (tc->TC_CHANNEL[channel].TC_CV) + 4 < usToTicks(REFRESH_INTERVAL) ) { // allow a few ticks to ensure the next OCR1A not missed
tc->TC_CHANNEL[channel].TC_RA = (unsigned int)usToTicks(REFRESH_INTERVAL);
}
else {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed
}
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn)
{
pmc_enable_periph_clk(id);
TC_Configure(tc, channel,
TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32
TC_CMR_WAVE | // Waveform mode
TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC
/* 84MHz, MCK/32, for 1.5ms: 3937 */
TC_SetRA(tc, channel, 2625); // 1ms
/* Configure and enable interrupt */
NVIC_EnableIRQ(irqn);
// TC_IER_CPAS: RA Compare
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS;
// Enables the timer clock and performs a software reset to start the counting
TC_Start(tc, channel);
}
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if (timer == _timer1)
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
#endif
#if defined (_useTimer2)
if (timer == _timer2)
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
#endif
#if defined (_useTimer3)
if (timer == _timer3)
_initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
#endif
#if defined (_useTimer4)
if (timer == _timer4)
_initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
#endif
#if defined (_useTimer5)
if (timer == _timer5)
_initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
#endif
}
static void finISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
#endif
#if defined (_useTimer2)
TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
#endif
#if defined (_useTimer3)
TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
#endif
#if defined (_useTimer4)
TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
#endif
#if defined (_useTimer5)
TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
} else {
this->servoIndex = INVALID_SERVO; // too many servos
}
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
timer16_Sequence_t timer;
if (this->servoIndex < MAX_SERVOS) {
pinMode(pin, OUTPUT); // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (isTimerActive(timer) == false) {
initISR(timer);
}
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex;
}
void Servo::detach()
{
timer16_Sequence_t timer;
servos[this->servoIndex].Pin.isActive = false;
timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH)
{
if (value < 0)
value = 0;
else if (value > 180)
value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if (value < SERVO_MIN()) // ensure pulse width is valid
value = SERVO_MIN();
else if (value > SERVO_MAX())
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
servos[channel].ticks = value;
}
}
int Servo::read() // return the value as degrees
{
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if (this->servoIndex != INVALID_SERVO)
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive;
}
#endif // ARDUINO_ARCH_SAM

88
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/sam/ServoTimers.h

@ -0,0 +1,88 @@
/*
Copyright (c) 2013 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*/
/**
* SAM Only definitions
* --------------------
*/
// For SAM3X:
#define _useTimer1
#define _useTimer2
#define _useTimer3
#define _useTimer4
#define _useTimer5
/*
TC0, chan 0 => TC0_Handler
TC0, chan 1 => TC1_Handler
TC0, chan 2 => TC2_Handler
TC1, chan 0 => TC3_Handler
TC1, chan 1 => TC4_Handler
TC1, chan 2 => TC5_Handler
TC2, chan 0 => TC6_Handler
TC2, chan 1 => TC7_Handler
TC2, chan 2 => TC8_Handler
*/
#if defined (_useTimer1)
#define TC_FOR_TIMER1 TC1
#define CHANNEL_FOR_TIMER1 0
#define ID_TC_FOR_TIMER1 ID_TC3
#define IRQn_FOR_TIMER1 TC3_IRQn
#define HANDLER_FOR_TIMER1 TC3_Handler
#endif
#if defined (_useTimer2)
#define TC_FOR_TIMER2 TC1
#define CHANNEL_FOR_TIMER2 1
#define ID_TC_FOR_TIMER2 ID_TC4
#define IRQn_FOR_TIMER2 TC4_IRQn
#define HANDLER_FOR_TIMER2 TC4_Handler
#endif
#if defined (_useTimer3)
#define TC_FOR_TIMER3 TC1
#define CHANNEL_FOR_TIMER3 2
#define ID_TC_FOR_TIMER3 ID_TC5
#define IRQn_FOR_TIMER3 TC5_IRQn
#define HANDLER_FOR_TIMER3 TC5_Handler
#endif
#if defined (_useTimer4)
#define TC_FOR_TIMER4 TC0
#define CHANNEL_FOR_TIMER4 2
#define ID_TC_FOR_TIMER4 ID_TC2
#define IRQn_FOR_TIMER4 TC2_IRQn
#define HANDLER_FOR_TIMER4 TC2_Handler
#endif
#if defined (_useTimer5)
#define TC_FOR_TIMER5 TC0
#define CHANNEL_FOR_TIMER5 0
#define ID_TC_FOR_TIMER5 ID_TC0
#define IRQn_FOR_TIMER5 TC0_IRQn
#define HANDLER_FOR_TIMER5 TC0_Handler
#endif
typedef enum { _timer1, _timer2, _timer3, _timer4, _timer5, _Nbr_16timers } timer16_Sequence_t ;

297
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/Servo.cpp

@ -0,0 +1,297 @@
/*
Copyright (c) 2015 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ARDUINO_ARCH_SAMD)
#include <Arduino.h>
#include <Servo.h>
#define usToTicks(_us) ((clockCyclesPerMicrosecond() * _us) / 16) // converts microseconds to tick
#define ticksToUs(_ticks) (((unsigned) _ticks * 16) / clockCyclesPerMicrosecond()) // converts from ticks back to microseconds
#define TRIM_DURATION 5 // compensation ticks to trim adjust for digitalWrite delays
static servo_t servos[MAX_SERVOS]; // static array of servo structures
uint8_t ServoCount = 0; // the total number of attached servos
static volatile int8_t currentServoIndex[_Nbr_16timers]; // index for the servo being pulsed for each timer (or -1 if refresh interval)
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
#define WAIT_TC16_REGS_SYNC(x) while(x->COUNT16.STATUS.bit.SYNCBUSY);
/************ static functions common to all instances ***********************/
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel, uint8_t intFlag);
#if defined (_useTimer1)
void HANDLER_FOR_TIMER1(void) {
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, INTFLAG_BIT_FOR_TIMER_1);
}
#endif
#if defined (_useTimer2)
void HANDLER_FOR_TIMER2(void) {
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, INTFLAG_BIT_FOR_TIMER_2);
}
#endif
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel, uint8_t intFlag)
{
if (currentServoIndex[timer] < 0) {
tc->COUNT16.COUNT.reg = (uint16_t) 0;
WAIT_TC16_REGS_SYNC(tc)
} else {
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) {
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, LOW); // pulse this channel low if activated
}
}
// Select the next servo controlled by this timer
currentServoIndex[timer]++;
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && currentServoIndex[timer] < SERVOS_PER_TIMER) {
if (SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) { // check if activated
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
}
// Get the counter value
uint16_t tcCounterValue = tc->COUNT16.COUNT.reg;
WAIT_TC16_REGS_SYNC(tc)
tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + SERVO(timer, currentServoIndex[timer]).ticks);
WAIT_TC16_REGS_SYNC(tc)
}
else {
// finished all channels so wait for the refresh period to expire before starting over
// Get the counter value
uint16_t tcCounterValue = tc->COUNT16.COUNT.reg;
WAIT_TC16_REGS_SYNC(tc)
if (tcCounterValue + 4UL < usToTicks(REFRESH_INTERVAL)) { // allow a few ticks to ensure the next OCR1A not missed
tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(REFRESH_INTERVAL);
}
else {
tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + 4UL); // at least REFRESH_INTERVAL has elapsed
}
WAIT_TC16_REGS_SYNC(tc)
currentServoIndex[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
// Clear the interrupt
tc->COUNT16.INTFLAG.reg = intFlag;
}
static inline void resetTC (Tc* TCx)
{
// Disable TCx
TCx->COUNT16.CTRLA.reg &= ~TC_CTRLA_ENABLE;
WAIT_TC16_REGS_SYNC(TCx)
// Reset TCx
TCx->COUNT16.CTRLA.reg = TC_CTRLA_SWRST;
WAIT_TC16_REGS_SYNC(TCx)
while (TCx->COUNT16.CTRLA.bit.SWRST);
}
static void _initISR(Tc *tc, uint8_t channel, uint32_t id, IRQn_Type irqn, uint8_t gcmForTimer, uint8_t intEnableBit)
{
// Enable GCLK for timer 1 (timer counter input clock)
GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(gcmForTimer));
while (GCLK->STATUS.bit.SYNCBUSY);
// Reset the timer
// TODO this is not the right thing to do if more than one channel per timer is used by the Servo library
resetTC(tc);
// Set timer counter mode to 16 bits
tc->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16;
// Set timer counter mode as normal PWM
tc->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_NPWM;
// Set the prescaler factor to GCLK_TC/16. At nominal 48MHz GCLK_TC this is 3000 ticks per millisecond
tc->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV16;
// Count up
tc->COUNT16.CTRLBCLR.bit.DIR = 1;
WAIT_TC16_REGS_SYNC(tc)
// First interrupt request after 1 ms
tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(1000UL);
WAIT_TC16_REGS_SYNC(tc)
// Configure interrupt request
// TODO this should be changed if more than one channel per timer is used by the Servo library
NVIC_DisableIRQ(irqn);
NVIC_ClearPendingIRQ(irqn);
NVIC_SetPriority(irqn, 0);
NVIC_EnableIRQ(irqn);
// Enable the match channel interrupt request
tc->COUNT16.INTENSET.reg = intEnableBit;
// Enable the timer and start it
tc->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE;
WAIT_TC16_REGS_SYNC(tc)
}
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if (timer == _timer1)
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1, GCM_FOR_TIMER_1, INTENSET_BIT_FOR_TIMER_1);
#endif
#if defined (_useTimer2)
if (timer == _timer2)
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2, GCM_FOR_TIMER_2, INTENSET_BIT_FOR_TIMER_2);
#endif
}
static void finISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
// Disable the match channel interrupt request
TC_FOR_TIMER1->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_1;
#endif
#if defined (_useTimer2)
// Disable the match channel interrupt request
TC_FOR_TIMER2->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_2;
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
} else {
this->servoIndex = INVALID_SERVO; // too many servos
}
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
timer16_Sequence_t timer;
if (this->servoIndex < MAX_SERVOS) {
pinMode(pin, OUTPUT); // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (isTimerActive(timer) == false) {
initISR(timer);
}
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex;
}
void Servo::detach()
{
timer16_Sequence_t timer;
servos[this->servoIndex].Pin.isActive = false;
timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH)
{
if (value < 0)
value = 0;
else if (value > 180)
value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if (value < SERVO_MIN()) // ensure pulse width is valid
value = SERVO_MIN();
else if (value > SERVO_MAX())
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
servos[channel].ticks = value;
}
}
int Servo::read() // return the value as degrees
{
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if (this->servoIndex != INVALID_SERVO)
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive;
}
#endif // ARDUINO_ARCH_SAMD

71
elegoo-kit-lessons/Lesson 9 Servo/Servo 2/src/samd/ServoTimers.h

@ -0,0 +1,71 @@
/*
Copyright (c) 2015 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*/
#ifndef __SERVO_TIMERS_H__
#define __SERVO_TIMERS_H__
/**
* SAMD Only definitions
* ---------------------
*/
// For SAMD:
#define _useTimer1
//#define _useTimer2 // <- TODO do not activate until the code in Servo.cpp has been changed in order
// to manage more than one channel per timer on the SAMD architecture
#if defined (_useTimer1)
#define TC_FOR_TIMER1 TC4
#define CHANNEL_FOR_TIMER1 0
#define INTENSET_BIT_FOR_TIMER_1 TC_INTENSET_MC0
#define INTENCLR_BIT_FOR_TIMER_1 TC_INTENCLR_MC0
#define INTFLAG_BIT_FOR_TIMER_1 TC_INTFLAG_MC0
#define ID_TC_FOR_TIMER1 ID_TC4
#define IRQn_FOR_TIMER1 TC4_IRQn
#define HANDLER_FOR_TIMER1 TC4_Handler
#define GCM_FOR_TIMER_1 GCM_TC4_TC5
#endif
#if defined (_useTimer2)
#define TC_FOR_TIMER2 TC4
#define CHANNEL_FOR_TIMER2 1
#define INTENSET_BIT_FOR_TIMER_2 TC_INTENSET_MC1
#define INTENCLR_BIT_FOR_TIMER_2 TC_INTENCLR_MC1
#define ID_TC_FOR_TIMER2 ID_TC4
#define IRQn_FOR_TIMER2 TC4_IRQn
#define HANDLER_FOR_TIMER2 TC4_Handler
#define GCM_FOR_TIMER_2 GCM_TC4_TC5
#endif
typedef enum {
#if defined (_useTimer1)
_timer1,
#endif
#if defined (_useTimer2)
_timer2,
#endif
_Nbr_16timers } timer16_Sequence_t;
#endif // __SERVO_TIMERS_H__

BIN
elegoo-kit-lessons/Lesson 9 Servo/Servo.zip

Binary file not shown.

27
elegoo-kit-lessons/Lesson 9 Servo/servo/servo.ino

@ -0,0 +1,27 @@
//www.elegoo.com
//2016.12.08
#include </Users/Imogen/Documents/Arduino/libraries/Servo/Servo.h>
#include </Users/Imogen/Documents/Arduino/libraries/Servo/Servo.cpp>
Servo myservo; // create servo object to control a servo
// twelve servo objects can be created on most boards
int pos = 0; // variable to store the servo position
void setup() {
myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop() {
for (pos = 0; pos <= 90; pos += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(50); // waits 15ms for the servo to reach the position
}
delay(1000);
for (pos = 90; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(50); // waits 15ms for the servo to reach the position
}
}

14
elegoo-kit-lessons/README.txt

@ -0,0 +1,14 @@
Dear Customer,
Thanks a lot for your support and purchasing Elegoo products.
We keep updating our tutorialso the tutorial in the CD may not be the latest version.
If you need the latest tutorial, you may download the tutorial from www.elegoo.com
We apologize for the inconvenience caused and should you have additional questions or problems during testing,
please feel free to contact us at service@elegoo.com or euservice@elegoo.com.
Thanks and best regards
Elegoo Support Team

BIN
elegoo-kit-lessons/UNO R3 DRIVER FAQ.pdf

Binary file not shown.

83
i2c_scanner/i2c_scanner.ino

@ -0,0 +1,83 @@
// --------------------------------------
// i2c_scanner
//
// Version 1
// This program (or code that looks like it)
// can be found in many places.
// For example on the Arduino.cc forum.
// The original author is not know.
// Version 2, Juni 2012, Using Arduino 1.0.1
// Adapted to be as simple as possible by Arduino.cc user Krodal
// Version 3, Feb 26 2013
// V3 by louarnold
// Version 4, March 3, 2013, Using Arduino 1.0.3
// by Arduino.cc user Krodal.
// Changes by louarnold removed.
// Scanning addresses changed from 0...127 to 1...119,
// according to the i2c scanner by Nick Gammon
// http://www.gammon.com.au/forum/?id=10896
// Version 5, March 28, 2013
// As version 4, but address scans now to 127.
// A sensor seems to use address 120.
// Version 6, November 27, 2015.
// Added waiting for the Leonardo serial communication.
//
//
// This sketch tests the standard 7-bit addresses
// Devices with higher bit address might not be seen properly.
//
#include <Wire.h>
void setup()
{
Wire.begin();
Serial.begin(9600);
while (!Serial); // Leonardo: wait for serial monitor
Serial.println("\nI2C Scanner");
}
void loop()
{
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknown error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
delay(5000); // wait 5 seconds for next scan
}

43
randomart_tester/randomart_tester.ino

@ -0,0 +1,43 @@
int rPin = 11;
int gPin = 10;
int bPin = 9;
int tstPin = 3;
void setup() {
// put your setup code here, to run once:
pinMode(rPin, OUTPUT); // R
pinMode(gPin, OUTPUT); // G
pinMode(bPin, OUTPUT); // B
pinMode(5, OUTPUT); // transistor
pinMode(4, OUTPUT); // transistor
pinMode(tstPin, OUTPUT); // test
}
void loop() {
// put your main code here, to run repeatedly:
if(rand()%2){
digitalWrite(tstPin,HIGH);
}
else{
digitalWrite(tstPin,LOW);
}
digitalWrite(rPin,0.6*15);
digitalWrite(gPin,0.3*15*0);
digitalWrite(bPin,0.1*15*0);
if(rand()%2){
digitalWrite(4,HIGH);
}
else{
digitalWrite(4,LOW);
}
if(rand()%2){
digitalWrite(5,HIGH);
}
else{
digitalWrite(5,LOW);
}
// digitalWrite(5,LOW);
delay(1000);
}
Loading…
Cancel
Save