fix bug in city lookups

This commit is contained in:
mm 2023-05-05 16:46:38 +00:00
parent ab26735c82
commit 1afd919cdb
4 changed files with 115 additions and 53 deletions

View File

@ -1,8 +1,11 @@
all: install data train eval
city_distances.csv: check generate_data.py
city_distances.csv: generate_data.py
@echo "Generating distance data..."
@bash -c 'time python generate_data.py --country US --workers 8 --chunk-size 4200'
@echo "Calculating range of generated data..."
@cat city_distances.csv | tail -n +2 | sort -t',' -k3n | head -n1
@cat city_distances.csv | tail -n +2 | sort -t',' -k3nr | head -n1
data: city_distances.csv
@ -29,10 +32,10 @@ clean:
@rm -rf output/
@rm -rf checkpoints/
compress: plots/progress_136013_sm.png
compress: plots/progress_12474_sm.png
plots/progress_136013_sm.png: plots/progress_136013.png
@convert -resize 33% plots/progress_136013.png plots/progress_136013_sm.png
plots/progress_12474_sm.png: plots/progress_12474.png
@convert -resize 33% plots/progress_12474.png progress_sample.png
install: .requirements_installed

View File

@ -61,7 +61,7 @@ You can inspect the evaluation plots generated by the `eval.py` script to see th
After one epoch, we can see the model has learned to correlate our desired quantities:
![Evaluation plot](./plots/progress_136013_sm.png)
![Evaluation plot](./plots/progress_sample.png)
*The above plot is an example showing the relationship between geodesic distance and the similarity between the embedded vectors (1 = more similar), for 10,000 randomly selected pairs of US cities (re-sampled for each image).*
@ -82,7 +82,7 @@ There are several potential improvements and extensions to the current model:
# Notes
- Generating the data took about 10-15 minutes (for 3269 US cities, of which there were 2826 unique names), in parallel on 8-cores (Intel 9700K), yielding 3,991,725 (combinations of cities) with size 150MB.
- Generating the data took about 10 minutes (for 3269 US cities, of which there were 2826 unique names), in parallel on 8-cores (Intel 9700K), yielding 3,991,725 (combinations of cities) with size 150MB.
- For cities with the same name, the one with the larger population is selected (had to make some sort of choice...).
- Training on an Nvidia 3090 FE takes about an hour per epoch with an 80/20 test/train split and batch size 16. At batch size 16 times larger, each epoch took about 5-6 minutes.
- Evaluation (generating plots) on the above hardware took about 15 minutes for 20 epochs at 10k samples each.

View File

@ -11,44 +11,39 @@ from geopy.distance import geodesic
from tqdm import tqdm
MAX_DISTANCE = 20_037.5
CACHE = geonamescache.GeonamesCache()
# Add argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--country", help="Specify the country code", type=str, default="US"
)
parser.add_argument(
"-w", "--workers", help="Specify the number of workers", type=int, default=1
)
parser.add_argument(
"-s",
"--chunk-size",
help="Specify chunk size for batching calculations",
type=int,
default=1000,
)
parser.add_argument(
"-o",
"--output-file",
help="Specify the name of the output file (file.csv)",
type=str,
default="city_distances.csv",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="Option to shuffle combinations list before iterating over it",
)
args = parser.parse_args()
gc = geonamescache.GeonamesCache()
cities = gc.get_cities()
us_cities = {
k: c
for k, c in cities.items()
if (c.get("countrycode") == args.country) # & (c.get("population", 0) > 5e4)
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--country", help="Specify the country code", type=str, default="US"
)
parser.add_argument(
"-w", "--workers", help="Specify the number of workers", type=int, default=1
)
parser.add_argument(
"-s",
"--chunk-size",
help="Specify chunk size for batching calculations",
type=int,
default=1000,
)
parser.add_argument(
"-o",
"--output-file",
help="Specify the name of the output file (file.csv)",
type=str,
default="city_distances.csv",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="Option to shuffle combinations list before iterating over it",
)
args = parser.parse_args()
return args
@lru_cache(maxsize=None)
@ -69,16 +64,52 @@ def get_coordinates(city_name, country_code="US"):
A tuple containing the latitude and longitude of the city,
or None if the city is not found.
"""
search_results = gc.search_cities(city_name, case_sensitive=True)
city = find_city(city_name, country_code)
if city is None:
return None
return city.get("latitude"), city.get("longitude")
@lru_cache(maxsize=None)
def find_city(city_name, country_code="US"):
"""
Finds the matching city.
Parameters
----------
city_name : str
The name of the city.
country_code : str, optional
The country code of the city, by default 'US'.
Returns
-------
city
A dict containing the raw data about the city.
"""
search_results = CACHE.get_cities_by_name(city_name)
# search_results = [
# list(c.values())[0] for c in search_results
# ]
search_results = [inner_dict for d in search_results for inner_dict in d.values()]
if not search_results: # if not found by name, search alternatenames
search_results = CACHE.search_cities(
city_name, attribute="alternatenames", case_sensitive=True
)
# filter search results to match requested country
# and avoid wasted computation if coordinates missing
search_results = [
d for d in search_results if (d.get("countrycode") == country_code)
d
for d in search_results
if (d.get("countrycode") == country_code) & (d.get("longitude") is not None)
]
if not search_results:
return None, None
return None
populations = [city.get("population") for city in search_results]
city = search_results[np.argmax(populations)]
return city.get("latitude"), city.get("longitude")
return city
def get_distance(city1, city2, country1="US", country2="US"):
@ -117,25 +148,39 @@ def calculate_distance(pair):
return city1, city2, distance
def main():
def main(args):
output_file = args.output_file
shuffle = args.shuffle
country_code = args.country
chunk_size = args.chunk_size
max_workers = args.workers
cities = CACHE.get_cities()
us_cities = {
k: c
for k, c in cities.items()
if (c.get("countrycode") == country_code) & (c.get("longitude") is not None)
}
# & (c.get("population", 0) > 5e4)
cities = list(us_cities.values())
unique_names = set([c.get("name") for c in cities])
unique_names = sorted(list(unique_names))
# unique_cities = [c for c in cities if c.get("name") in unique_names]
print(f"Num cities: {len(cities)}, unique names: {len(unique_names)}")
city_combinations = list(itertools.combinations(unique_names, 2))
if args.shuffle:
if shuffle:
np.random.shuffle(city_combinations)
chunk_size = args.chunk_size
num_chunks = len(city_combinations) // chunk_size + 1
output_file = args.output_file
# chunk size, city_combinations, max_workers, output_file
num_chunks = len(city_combinations) // chunk_size + 1
with open(output_file, "w", newline="") as csvfile:
fieldnames = ["city_from", "city_to", "distance"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
try:
executor = concurrent.futures.ProcessPoolExecutor(max_workers=args.workers)
executor = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)
for i in tqdm(
range(num_chunks),
total=num_chunks,
@ -163,6 +208,20 @@ def main():
executor.shutdown(wait=False)
raise SystemExit("Execution terminated by user.")
print(f"Wrote {output_file}")
if __name__ == "__main__":
main()
# preliminary check
assert find_city("New York City") is not None
assert find_city("NYC") is not None
assert round(get_distance("NYC", "Jamaica"), 2) == 17.11
args = parse_args()
main(args)
# perform check
print("Performing a quick validation...")
import pandas as pd
df = pd.read_csv(args.output_file)
assert df["distance"].min() > 0
assert df["distance"].max() < MAX_DISTANCE

Binary file not shown.

Before

Width:  |  Height:  |  Size: 230 KiB