fix bug in city lookups
This commit is contained in:
parent
ab26735c82
commit
6c5d71e2d9
11
Makefile
11
Makefile
@ -1,8 +1,11 @@
|
||||
all: install data train eval
|
||||
|
||||
city_distances.csv: check generate_data.py
|
||||
city_distances.csv: generate_data.py
|
||||
@echo "Generating distance data..."
|
||||
@bash -c 'time python generate_data.py --country US --workers 8 --chunk-size 4200'
|
||||
@echo "Calculating range of generated data..."
|
||||
@cat city_distances.csv | tail -n +2 | sort -t',' -k3n | head -n1
|
||||
@cat city_distances.csv | tail -n +2 | sort -t',' -k3nr | head -n1
|
||||
|
||||
data: city_distances.csv
|
||||
|
||||
@ -29,10 +32,10 @@ clean:
|
||||
@rm -rf output/
|
||||
@rm -rf checkpoints/
|
||||
|
||||
compress: plots/progress_136013_sm.png
|
||||
compress: plots/progress_12474_sm.png
|
||||
|
||||
plots/progress_136013_sm.png: plots/progress_136013.png
|
||||
@convert -resize 33% plots/progress_136013.png plots/progress_136013_sm.png
|
||||
plots/progress_12474_sm.png: plots/progress_12474.png
|
||||
@convert -resize 33% plots/progress_12474.png progress_sample.png
|
||||
|
||||
install: .requirements_installed
|
||||
|
||||
|
@ -59,9 +59,9 @@ The approach demonstrated can be extended to other metrics or features beyond ge
|
||||
After training, the model should be able to understand the similarity between cities based on their geodesic distances.
|
||||
You can inspect the evaluation plots generated by the `eval.py` script to see the improvement in similarity scores before and after training.
|
||||
|
||||
After one epoch, we can see the model has learned to correlate our desired quantities:
|
||||
After even just one epoch, we can see the model has learned to correlate our desired quantities:
|
||||
|
||||
![Evaluation plot](./plots/progress_136013_sm.png)
|
||||
![Evaluation plot](./progress_sample.png)
|
||||
|
||||
*The above plot is an example showing the relationship between geodesic distance and the similarity between the embedded vectors (1 = more similar), for 10,000 randomly selected pairs of US cities (re-sampled for each image).*
|
||||
|
||||
@ -82,7 +82,7 @@ There are several potential improvements and extensions to the current model:
|
||||
|
||||
|
||||
# Notes
|
||||
- Generating the data took about 10-15 minutes (for 3269 US cities, of which there were 2826 unique names), in parallel on 8-cores (Intel 9700K), yielding 3,991,725 (combinations of cities) with size 150MB.
|
||||
- Generating the data took about 10 minutes (for 3269 US cities, of which there were 2826 unique names), in parallel on 8-cores (Intel 9700K), yielding 3,991,725 (combinations of cities) with size 150MB.
|
||||
- For cities with the same name, the one with the larger population is selected (had to make some sort of choice...).
|
||||
- Training on an Nvidia 3090 FE takes about an hour per epoch with an 80/20 test/train split and batch size 16. At batch size 16 times larger, each epoch took about 5-6 minutes.
|
||||
- Evaluation (generating plots) on the above hardware took about 15 minutes for 20 epochs at 10k samples each.
|
||||
|
153
generate_data.py
153
generate_data.py
@ -11,44 +11,39 @@ from geopy.distance import geodesic
|
||||
from tqdm import tqdm
|
||||
|
||||
MAX_DISTANCE = 20_037.5
|
||||
CACHE = geonamescache.GeonamesCache()
|
||||
|
||||
|
||||
# Add argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-c", "--country", help="Specify the country code", type=str, default="US"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-w", "--workers", help="Specify the number of workers", type=int, default=1
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--chunk-size",
|
||||
help="Specify chunk size for batching calculations",
|
||||
type=int,
|
||||
default=1000,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output-file",
|
||||
help="Specify the name of the output file (file.csv)",
|
||||
type=str,
|
||||
default="city_distances.csv",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shuffle",
|
||||
action="store_true",
|
||||
help="Option to shuffle combinations list before iterating over it",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
gc = geonamescache.GeonamesCache()
|
||||
cities = gc.get_cities()
|
||||
us_cities = {
|
||||
k: c
|
||||
for k, c in cities.items()
|
||||
if (c.get("countrycode") == args.country) # & (c.get("population", 0) > 5e4)
|
||||
}
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-c", "--country", help="Specify the country code", type=str, default="US"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-w", "--workers", help="Specify the number of workers", type=int, default=1
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--chunk-size",
|
||||
help="Specify chunk size for batching calculations",
|
||||
type=int,
|
||||
default=1000,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output-file",
|
||||
help="Specify the name of the output file (file.csv)",
|
||||
type=str,
|
||||
default="distances.csv",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shuffle",
|
||||
action="store_true",
|
||||
help="Option to shuffle combinations list before iterating over it",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
@ -69,16 +64,52 @@ def get_coordinates(city_name, country_code="US"):
|
||||
A tuple containing the latitude and longitude of the city,
|
||||
or None if the city is not found.
|
||||
"""
|
||||
search_results = gc.search_cities(city_name, case_sensitive=True)
|
||||
city = find_city(city_name, country_code)
|
||||
if city is None:
|
||||
return None
|
||||
return city.get("latitude"), city.get("longitude")
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def find_city(city_name, country_code="US"):
|
||||
"""
|
||||
Finds the matching city.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
city_name : str
|
||||
The name of the city.
|
||||
country_code : str, optional
|
||||
The country code of the city, by default 'US'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
city
|
||||
A dict containing the raw data about the city.
|
||||
|
||||
"""
|
||||
search_results = CACHE.get_cities_by_name(city_name)
|
||||
# search_results = [
|
||||
# list(c.values())[0] for c in search_results
|
||||
# ]
|
||||
search_results = [inner_dict for d in search_results for inner_dict in d.values()]
|
||||
if not search_results: # if not found by name, search alternatenames
|
||||
search_results = CACHE.search_cities(
|
||||
city_name, attribute="alternatenames", case_sensitive=True
|
||||
)
|
||||
# filter search results to match requested country
|
||||
# and avoid wasted computation if coordinates missing
|
||||
search_results = [
|
||||
d for d in search_results if (d.get("countrycode") == country_code)
|
||||
d
|
||||
for d in search_results
|
||||
if (d.get("countrycode") == country_code) & (d.get("longitude") is not None)
|
||||
]
|
||||
|
||||
if not search_results:
|
||||
return None, None
|
||||
return None
|
||||
populations = [city.get("population") for city in search_results]
|
||||
city = search_results[np.argmax(populations)]
|
||||
return city.get("latitude"), city.get("longitude")
|
||||
return city
|
||||
|
||||
|
||||
def get_distance(city1, city2, country1="US", country2="US"):
|
||||
@ -117,25 +148,39 @@ def calculate_distance(pair):
|
||||
return city1, city2, distance
|
||||
|
||||
|
||||
def main():
|
||||
def main(args):
|
||||
output_file = args.output_file
|
||||
shuffle = args.shuffle
|
||||
country_code = args.country
|
||||
chunk_size = args.chunk_size
|
||||
max_workers = args.workers
|
||||
|
||||
cities = CACHE.get_cities()
|
||||
us_cities = {
|
||||
k: c
|
||||
for k, c in cities.items()
|
||||
if (c.get("countrycode") == country_code) & (c.get("longitude") is not None)
|
||||
}
|
||||
# & (c.get("population", 0) > 5e4)
|
||||
|
||||
cities = list(us_cities.values())
|
||||
unique_names = set([c.get("name") for c in cities])
|
||||
unique_names = sorted(list(unique_names))
|
||||
# unique_cities = [c for c in cities if c.get("name") in unique_names]
|
||||
print(f"Num cities: {len(cities)}, unique names: {len(unique_names)}")
|
||||
city_combinations = list(itertools.combinations(unique_names, 2))
|
||||
if args.shuffle:
|
||||
if shuffle:
|
||||
np.random.shuffle(city_combinations)
|
||||
chunk_size = args.chunk_size
|
||||
num_chunks = len(city_combinations) // chunk_size + 1
|
||||
output_file = args.output_file
|
||||
|
||||
# chunk size, city_combinations, max_workers, output_file
|
||||
num_chunks = len(city_combinations) // chunk_size + 1
|
||||
with open(output_file, "w", newline="") as csvfile:
|
||||
fieldnames = ["city_from", "city_to", "distance"]
|
||||
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
|
||||
try:
|
||||
executor = concurrent.futures.ProcessPoolExecutor(max_workers=args.workers)
|
||||
executor = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)
|
||||
for i in tqdm(
|
||||
range(num_chunks),
|
||||
total=num_chunks,
|
||||
@ -163,6 +208,20 @@ def main():
|
||||
executor.shutdown(wait=False)
|
||||
raise SystemExit("Execution terminated by user.")
|
||||
|
||||
print(f"Wrote {output_file}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
# preliminary check
|
||||
assert find_city("New York City") is not None
|
||||
assert find_city("NYC") is not None
|
||||
assert round(get_distance("NYC", "Jamaica"), 2) == 17.11
|
||||
args = parse_args()
|
||||
main(args)
|
||||
# perform check
|
||||
print("Performing a quick validation...")
|
||||
import pandas as pd
|
||||
|
||||
df = pd.read_csv(args.output_file)
|
||||
assert df["distance"].min() > 0
|
||||
assert df["distance"].max() < MAX_DISTANCE
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 230 KiB |
BIN
progress_sample.png
Normal file
BIN
progress_sample.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 237 KiB |
Loading…
Reference in New Issue
Block a user