|
|
@ -32,7 +32,7 @@ model = SentenceTransformer(model_name, device="cuda") |
|
|
|
# (fake.city(), fake.city(), np.random.rand()) |
|
|
|
# for _ in range(num_examples) |
|
|
|
# ] |
|
|
|
data = pd.read_csv("city_distances_sample.csv") |
|
|
|
data = pd.read_csv("city_distances_full.csv") |
|
|
|
MAX_DISTANCE = 20_037.5 # global max distance |
|
|
|
# MAX_DISTANCE = data["distance"].max() # about 5k |
|
|
|
|
|
|
@ -70,7 +70,7 @@ print("TRAINING") |
|
|
|
training_args = { |
|
|
|
"output_path": "./output", |
|
|
|
# "evaluation_steps": steps_per_epoch, # already evaluates at the end of each epoch |
|
|
|
"epochs": 5, |
|
|
|
"epochs": 20, |
|
|
|
"warmup_steps": 500, |
|
|
|
"optimizer_params": {"lr": 2e-5}, |
|
|
|
# "weight_decay": 0, # not sure if this helps but works fine without setting it. |
|
|
@ -78,7 +78,7 @@ training_args = { |
|
|
|
"save_best_model": True, |
|
|
|
"checkpoint_path": "./checkpoints_absmax_split", |
|
|
|
"checkpoint_save_steps": steps_per_epoch, |
|
|
|
"checkpoint_save_total_limit": 20, |
|
|
|
"checkpoint_save_total_limit": 100, |
|
|
|
} |
|
|
|
print(f"TRAINING ARGUMENTS:\n {training_args}") |
|
|
|
|
|
|
|