You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

26 lines
847 B

import torch
10 months ago
def preprocess_data(data, skip=True):
# Assuming 'data' is a tensor of shape [n_samples, 3]
if not skip:
# Compute argmin and argmax for each row
argmin_values = torch.argmin(data, dim=1, keepdim=True).float()
argmax_values = torch.argmax(data, dim=1, keepdim=True).float()
# Normalize or scale argmin and argmax if necessary
# For example, here I am just dividing by the number of features
argmin_values /= data.shape[1] - 1
argmax_values /= data.shape[1] - 1
# Concatenate the argmin and argmax values to the original data
new_data = torch.cat((data, argmin_values, argmax_values), dim=1)
else:
new_data = data
return new_data
PURE_RGB = preprocess_data(
torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=torch.float32)
)