You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

171 lines
4.7 KiB

import argparse
from pathlib import Path
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
from hilbertcurve.hilbertcurve import HilbertCurve
from check import plot_preds
# Extract XKCD colors
colors = list(mcolors.XKCD_COLORS.keys())
rgb_values = [mcolors.to_rgb(mcolors.XKCD_COLORS[color]) for color in colors]
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--sort-by", type=str, default="hsv", help="kind of sorting")
parser.add_argument("--seed", type=int, default=21, help="seed for UMAP")
parser.add_argument("--dpi", type=int, default=300, help="dpi for saving")
parser.add_argument("--size", type=float, default=6.0, help="size of figure")
parser.add_argument(
"--fontsize",
type=float,
default=0,
help="fontsize of annotation (default: 0 = None)",
)
parser.add_argument(
"--radius", type=float, default=1 / 2, help="inner radius of circle"
)
args = parser.parse_args()
KIND = args.sort_by
SEED = args.seed
DPI = args.dpi
SIZE = args.size
FONTSIZE = args.fontsize
INNER_RADIUS = args.radius
DIR = "/teamspace/studios/this_studio/colors/colors-umap"
prefix = ""
if KIND == "umap":
prefix = f"{SEED:04d}"
FDIR = DIR
else:
FDIR = f"{DIR}/{KIND}"
Path(FDIR).mkdir(exist_ok=True, parents=True)
fname = f"{FDIR}/v{prefix}.png"
if KIND in ("lex", "alpha", "abc"):
preds = np.array(colors)
elif KIND == "umap":
# from umap import UMAP
from cuml import UMAP
# Use UMAP to create a 1D representation
reducer = UMAP(
n_components=1,
n_neighbors=250,
min_dist=1e-2,
metric="euclidean",
random_state=SEED,
negative_sample_rate=2,
)
embedding = reducer.fit_transform(np.array(rgb_values))
# Sort colors by the 1D representation
preds = embedding[:, 0]
del reducer, embedding
elif KIND in ("cielab", "lab", "ciede2000"):
from skimage.color import deltaE_ciede2000, rgb2lab
# CIELAB
# Convert RGB values to CIELAB
lab_values = rgb2lab([rgb_values])
# Reference color for sorting (can be the first color or any other reference point)
reference_color = lab_values[0]
# Compute CIEDE2000 distances of all colors to the reference color
distances = [deltaE_ciede2000(reference_color, color) for color in lab_values]
# Sort colors by their CIEDE2000 distance to the reference color
# preds = distances).flatten() # awful
lab_values_flat = lab_values.reshape(-1, 3)
# Sort colors based on the L* value in the CIELAB space
# 0 corresponds to the L* channel
preds = lab_values_flat[:, 0]
elif KIND == "hsv":
from matplotlib.colors import rgb_to_hsv
# Convert RGB values to HSV
hsv_values = np.array([rgb_to_hsv(np.array(rgb)) for rgb in rgb_values])
# Sort colors based on the hue value
# 0 corresponds to the hue component
preds = hsv_values[:, 0]
else:
raise ValueError(f"Unknown kind: {KIND}")
sorted_indices = np.argsort(preds)
# Save the sorted indices to disk
# if (KIND == "umap") or (KIND != "umap"):
PDIR = f"scripts/{KIND}"
Path(PDIR).mkdir(parents=True, exist_ok=True)
file_path = f"{PDIR}/{SEED:06d}.npy"
np.save(file_path, preds.ravel())
print(f"Predictions saved to {file_path}")
# Sort colors by the 1D representation
sorted_colors = [colors[i] for i in sorted_indices]
plot_preds(
preds,
np.array(rgb_values),
fname,
roll=False,
dpi=DPI,
radius=INNER_RADIUS,
figsize=(SIZE, SIZE),
fsize=FONTSIZE,
label=f"{KIND.upper()}",
)
print(f"saved {fname}")
HILBERT = False
if HILBERT:
# Create Hilbert curve
# We'll set the order such that the number of positions is greater than or equal to the number of colors
hilbert_order = int(np.ceil(0.5 * np.log2(len(sorted_colors))))
hilbert_curve = HilbertCurve(hilbert_order, 2)
# Create an image for visualization
image_size = 2**hilbert_order
image = np.ones((image_size, image_size, 3))
for i, color in enumerate(sorted_colors):
# Convert linear index to Hilbert coordinates
coords = hilbert_curve.point_from_distance(i)
image[coords[1], coords[0]] = mcolors.to_rgb(color)
# annotation in upper right
# Display the image
fig, ax = plt.subplots(1, 1, figsize=(SIZE, SIZE))
ax.imshow(image)
ax.annotate(
f"{KIND.upper()}",
(1.0, 1.0),
ha="right",
va="top",
size=FONTSIZE,
xycoords="axes fraction",
)
ax.axis("off")
ax.set_aspect("equal")
fig.tight_layout()
fname = f"{DIR}/{prefix}{KIND}_sorted_colors_hilbert.png"
fig.savefig(
fname,
dpi=DPI,
transparent=True,
# bbox_inches="tight",
# pad_inches=0
)
print(f"Saved {fname}")