|
|
|
# import matplotlib.patches as patches
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from dataloader import extract_colors, preprocess_data
|
|
|
|
from model import ColorTransformerModel
|
|
|
|
|
|
|
|
# import matplotlib.colors as mcolors
|
|
|
|
|
|
|
|
|
|
|
|
def make_image(ckpt: str, fname: str, color=True):
|
|
|
|
M = ColorTransformerModel.load_from_checkpoint(ckpt)
|
|
|
|
|
|
|
|
# preds = M(rgb_tensor)
|
|
|
|
if not color:
|
|
|
|
N = 949
|
|
|
|
linear_space = torch.linspace(0, 1, N)
|
|
|
|
rgb_tensor = linear_space.unsqueeze(1).repeat(1, 3)
|
|
|
|
else:
|
|
|
|
rgb_tensor, names = extract_colors()
|
|
|
|
|
|
|
|
rgb_values = rgb_tensor.detach().numpy()
|
|
|
|
rgb_tensor = preprocess_data(rgb_tensor)
|
|
|
|
preds = M(rgb_tensor)
|
|
|
|
sorted_inds = np.argsort(preds.detach().numpy().ravel())
|
|
|
|
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
for i in range(len(sorted_inds)):
|
|
|
|
idx = sorted_inds[i]
|
|
|
|
color = rgb_values[idx]
|
|
|
|
ax.plot([i + 0.5, i + 0.5], [0, 1], lw=1, c=color, antialiased=True, alpha=1)
|
|
|
|
# rect = patches.Rectangle((i, 0), 1, 5, linewidth=0.1, edgecolor=None, facecolor=None, alpha=1)
|
|
|
|
# ax.add_patch(rect)
|
|
|
|
ax.axis("off")
|
|
|
|
# ax.axis("square")
|
|
|
|
|
|
|
|
plt.savefig(f"{fname}.png", dpi=300)
|
|
|
|
|
|
|
|
|
|
|
|
def create_circle(ckpt: str, fname: str):
|
|
|
|
if isinstance(ckpt, str):
|
|
|
|
M = ColorTransformerModel.load_from_checkpoint(ckpt)
|
|
|
|
else:
|
|
|
|
M = ckpt
|
|
|
|
|
|
|
|
rgb_tensor, _ = extract_colors()
|
|
|
|
preds = M(rgb_tensor)
|
|
|
|
plot_preds(preds, fname=fname)
|
|
|
|
|
|
|
|
|
|
|
|
def plot_preds(preds, fname: str):
|
|
|
|
rgb_tensor, _ = extract_colors()
|
|
|
|
rgb_values = rgb_tensor.detach().numpy()
|
|
|
|
rgb_tensor = preprocess_data(rgb_tensor)
|
|
|
|
|
|
|
|
if isinstance(preds, torch.Tensor):
|
|
|
|
preds = preds.detach().numpy()
|
|
|
|
sorted_inds = np.argsort(preds.ravel())
|
|
|
|
colors = rgb_values[sorted_inds]
|
|
|
|
# find white in colors, put it first.
|
|
|
|
white = np.array([1, 1, 1])
|
|
|
|
white_idx = np.where((colors == white).all(axis=1))[0][0]
|
|
|
|
colors = np.roll(colors, -white_idx, axis=0)
|
|
|
|
# print(white_idx, colors[:2])
|
|
|
|
|
|
|
|
N = len(colors)
|
|
|
|
# Create a plot with these hues in a circle
|
|
|
|
fig, ax = plt.subplots(figsize=(3, 3), subplot_kw=dict(polar=True))
|
|
|
|
|
|
|
|
# Each wedge in the circle
|
|
|
|
theta = np.linspace(0, 2 * np.pi, N + 1) + np.pi / 2
|
|
|
|
width = 2 * np.pi / (N) # equal size for each wedge
|
|
|
|
|
|
|
|
for i in range(N):
|
|
|
|
ax.bar(theta[i], 1, width=width, color=colors[i], bottom=0.0)
|
|
|
|
|
|
|
|
ax.set_xticks([])
|
|
|
|
ax.set_yticks([])
|
|
|
|
ax.axis("off")
|
|
|
|
fig.tight_layout()
|
|
|
|
plt.savefig(f"{fname}.png", dpi=150)
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# name = "color_128_0.3_1.00e-06"
|
|
|
|
import argparse
|
|
|
|
import glob
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# make the following accept a list of arguments
|
|
|
|
parser.add_argument("-v", "--version", type=int, nargs="+", default=[0, 1])
|
|
|
|
args = parser.parse_args()
|
|
|
|
versions = args.version
|
|
|
|
for v in versions:
|
|
|
|
name = f"out/v{v}"
|
|
|
|
# ckpt = f"/teamspace/jobs/{name}/work/colors/lightning_logs/version_2/checkpoints/epoch=999-step=8000.ckpt"
|
|
|
|
ckpt_path = f"/teamspace/studios/this_studio/colors/lightning_logs/version_{v}/checkpoints/*.ckpt"
|
|
|
|
ckpt = glob.glob(ckpt_path)
|
|
|
|
if len(ckpt) > 0:
|
|
|
|
ckpt = ckpt[-1]
|
|
|
|
print(f"Generating image for checkpoint: {ckpt}")
|
|
|
|
create_circle(ckpt, fname=name)
|
|
|
|
else:
|
|
|
|
print(f"No checkpoint found for version {v}")
|
|
|
|
# make_image(ckpt, fname=name + "b", color=False)
|