Browse Source

prep experiment, fix bugs

new-sep-loss
mm 11 months ago
parent
commit
05a66f114c
  1. 1
      dataloader.py
  2. 16
      search.py

1
dataloader.py

@ -28,6 +28,7 @@ def create_dataloader(N: int = 50, **kwargs):
def create_gray_supplement(N: int = 50):
linear_space = torch.linspace(0, 1, N)
gray_tensor = linear_space.unsqueeze(1).repeat(1, 3)
gray_tensor = preprocess_data(gray_tensor)
return [(gray_tensor[i], f"gray{i/N:2.4f}") for i in range(len(gray_tensor))]

16
search.py

@ -1,8 +1,11 @@
import subprocess
import sys
from random import sample
import numpy as np
from lightning_sdk import Machine, Studio
NUM_JOBS = 21
NUM_JOBS = 64
# reference to the current studio
# if you run outside of Lightning, you can pass the Studio name
@ -15,7 +18,7 @@ job_plugin = studio.installed_plugins["jobs"]
# do a sweep over learning rates
# Define the ranges or sets of values for each hyperparameter
alpha_values = [0.1, 0.25, 0.5, 0.7, 0.9]
alpha_values = list(np.round(np.linspace(0, 2, 21), 4))
learning_rate_values = [1e-3, 1e-4, 1e-5]
batch_size_values = [128]
max_epochs_values = [5000]
@ -31,7 +34,7 @@ all_params = [
# perform random search with a limit
search_params = sample(all_params, NUM_JOBS)
search_params = sample(all_params, min(NUM_JOBS, len(all_params)))
for idx, params in enumerate(search_params):
a, lr, bs, me = params
@ -39,4 +42,9 @@ for idx, params in enumerate(search_params):
job_name = f"color2_{bs}_{a}_{lr:2.2e}"
# job_plugin.run(cmd, machine=Machine.T4, name=job_name)
print(f"Running {params}: {cmd}")
os.system(cmd)
try:
# Run the command and wait for it to complete
subprocess.run(cmd, shell=True, check=True)
except KeyboardInterrupt:
print("Interrupted by user")
sys.exit(1)

Loading…
Cancel
Save