|
|
@ -27,7 +27,17 @@ widths = [2**k for k in range(4, 15)] |
|
|
|
batch_size_values = [256] |
|
|
|
max_epochs_values = [100] |
|
|
|
seeds = list(range(21, 1992)) |
|
|
|
|
|
|
|
optimizers = [ |
|
|
|
"Adagrad", |
|
|
|
"Adam", |
|
|
|
"SGD", |
|
|
|
"AdamW", |
|
|
|
"LBFGS", |
|
|
|
"RAdam", |
|
|
|
"RMSprop", |
|
|
|
"SparseAdam", |
|
|
|
"Adadelta", |
|
|
|
] |
|
|
|
# Generate all possible combinations of hyperparameters |
|
|
|
all_params = [ |
|
|
|
(alpha, lr, bs, me, s, w) |
|
|
@ -37,6 +47,7 @@ all_params = [ |
|
|
|
for me in max_epochs_values |
|
|
|
for s in seeds |
|
|
|
for w in widths |
|
|
|
for opt in optimizers |
|
|
|
] |
|
|
|
|
|
|
|
|
|
|
@ -44,7 +55,7 @@ all_params = [ |
|
|
|
search_params = sample(all_params, min(NUM_JOBS, len(all_params))) |
|
|
|
|
|
|
|
for idx, params in enumerate(search_params): |
|
|
|
a, lr, bs, me, s, w = params |
|
|
|
a, lr, bs, me, s, w, opt = params |
|
|
|
cmd = f"cd ~/colors && python main.py --alpha {a} --lr {lr} --bs {bs} --max_epochs {me} --seed {s} --width {w}" |
|
|
|
cmd = f""" |
|
|
|
python newmain.py fit \ |
|
|
@ -62,14 +73,14 @@ python newmain.py fit \ |
|
|
|
--trainer.callbacks callbacks.SaveImageCallback \ |
|
|
|
--trainer.callbacks.init_args.final_dir out \ |
|
|
|
--trainer.callbacks.init_args.save_interval 0 \ |
|
|
|
--optimizer torch.optim.Adam \ |
|
|
|
--optimizer torch.optim.{opt} \ |
|
|
|
--optimizer.init_args.lr {lr} \ |
|
|
|
--lr_scheduler lightning.pytorch.cli.ReduceLROnPlateau \ |
|
|
|
--lr_scheduler.init_args.monitor hp_metric \ |
|
|
|
--lr_scheduler.init_args.factor 0.05 \ |
|
|
|
--lr_scheduler.init_args.patience 5 \ |
|
|
|
--lr_scheduler.init_args.cooldown 10 \ |
|
|
|
--lr_scheduler.init_args.verbose true |
|
|
|
--lr_scheduler.init_args.verbose true |
|
|
|
""" |
|
|
|
|
|
|
|
# job_name = f"color2_{bs}_{a}_{lr:2.2e}" |
|
|
|