|
|
@ -27,19 +27,19 @@ learning_rate_values = [1e-3] |
|
|
|
# learning_rate_values = [5e-4] |
|
|
|
|
|
|
|
# alpha_values = [0, .25, 0.5, 0.75, 1] # alpha = 0 is unsupervised. alpha = 1 is supervised. |
|
|
|
alpha_values = [0.9] |
|
|
|
alpha_values = [0] |
|
|
|
# widths = [2**k for k in range(4, 13)] |
|
|
|
# depths = [1, 2, 4, 8, 16] |
|
|
|
widths, depths = [512], [8] |
|
|
|
widths, depths = [512], [4] |
|
|
|
|
|
|
|
batch_size_values = [256] |
|
|
|
max_epochs_values = [100] |
|
|
|
seeds = list(range(21, 1992)) |
|
|
|
optimizers = [ |
|
|
|
# "Adagrad", |
|
|
|
# "Adam", |
|
|
|
"Adam", |
|
|
|
# "SGD", |
|
|
|
"AdamW", |
|
|
|
# "AdamW", |
|
|
|
# "LBFGS", |
|
|
|
# "RAdam", |
|
|
|
# "RMSprop", |
|
|
@ -80,7 +80,7 @@ python newmain.py fit \ |
|
|
|
--model.depth {d} \ |
|
|
|
--model.bias true \ |
|
|
|
--model.loop true \ |
|
|
|
--model.transform relu \ |
|
|
|
--model.transform tanh \ |
|
|
|
--trainer.min_epochs 10 \ |
|
|
|
--trainer.max_epochs {me} \ |
|
|
|
--trainer.log_every_n_steps 3 \ |
|
|
|