switch to unsupervised
This commit is contained in:
parent
b9d334e49a
commit
721993d9e5
86
hsv1.txt
Normal file
86
hsv1.txt
Normal file
@ -0,0 +1,86 @@
|
||||
# lightning.pytorch==2.1.3
|
||||
seed_everything: 1387
|
||||
trainer:
|
||||
accelerator: auto
|
||||
strategy: auto
|
||||
devices: auto
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger: null
|
||||
callbacks:
|
||||
- class_path: callbacks.SaveImageCallback
|
||||
init_args:
|
||||
save_interval: 0
|
||||
final_dir: out
|
||||
fast_dev_run: false
|
||||
max_epochs: 10
|
||||
min_epochs: 10
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
max_time: null
|
||||
limit_train_batches: null
|
||||
limit_val_batches: 50
|
||||
limit_test_batches: null
|
||||
limit_predict_batches: null
|
||||
overfit_batches: 0.0
|
||||
val_check_interval: null
|
||||
check_val_every_n_epoch: 1
|
||||
num_sanity_val_steps: null
|
||||
log_every_n_steps: 3
|
||||
enable_checkpointing: null
|
||||
enable_progress_bar: null
|
||||
enable_model_summary: null
|
||||
accumulate_grad_batches: 1
|
||||
gradient_clip_val: null
|
||||
gradient_clip_algorithm: null
|
||||
deterministic: null
|
||||
benchmark: null
|
||||
inference_mode: true
|
||||
use_distributed_sampler: true
|
||||
profiler: null
|
||||
detect_anomaly: false
|
||||
barebones: false
|
||||
plugins: null
|
||||
sync_batchnorm: false
|
||||
reload_dataloaders_every_n_epochs: 0
|
||||
default_root_dir: null
|
||||
model:
|
||||
transform: tanh
|
||||
width: 128
|
||||
depth: 4
|
||||
bias: true
|
||||
alpha: 0.0
|
||||
data:
|
||||
val_size: 10000
|
||||
train_size: 10000
|
||||
batch_size: 256
|
||||
num_workers: 3
|
||||
ckpt_path: null
|
||||
optimizer:
|
||||
class_path: torch.optim.Adam
|
||||
init_args:
|
||||
lr: 0.001
|
||||
betas:
|
||||
- 0.9
|
||||
- 0.999
|
||||
eps: 1.0e-08
|
||||
weight_decay: 0.0
|
||||
amsgrad: false
|
||||
foreach: null
|
||||
maximize: false
|
||||
capturable: false
|
||||
differentiable: false
|
||||
fused: null
|
||||
lr_scheduler:
|
||||
class_path: lightning.pytorch.cli.ReduceLROnPlateau
|
||||
init_args:
|
||||
monitor: hp_metric
|
||||
mode: min
|
||||
factor: 0.05
|
||||
patience: 5
|
||||
threshold: 0.0001
|
||||
threshold_mode: rel
|
||||
cooldown: 10
|
||||
min_lr: 0.0
|
||||
eps: 1.0e-08
|
||||
verbose: true
|
86
hsv2.txt
Normal file
86
hsv2.txt
Normal file
@ -0,0 +1,86 @@
|
||||
# lightning.pytorch==2.1.3
|
||||
seed_everything: 31
|
||||
trainer:
|
||||
accelerator: auto
|
||||
strategy: auto
|
||||
devices: auto
|
||||
num_nodes: 1
|
||||
precision: null
|
||||
logger: null
|
||||
callbacks:
|
||||
- class_path: callbacks.SaveImageCallback
|
||||
init_args:
|
||||
save_interval: 0
|
||||
final_dir: out
|
||||
fast_dev_run: false
|
||||
max_epochs: 10
|
||||
min_epochs: 10
|
||||
max_steps: -1
|
||||
min_steps: null
|
||||
max_time: null
|
||||
limit_train_batches: null
|
||||
limit_val_batches: 50
|
||||
limit_test_batches: null
|
||||
limit_predict_batches: null
|
||||
overfit_batches: 0.0
|
||||
val_check_interval: null
|
||||
check_val_every_n_epoch: 1
|
||||
num_sanity_val_steps: null
|
||||
log_every_n_steps: 3
|
||||
enable_checkpointing: null
|
||||
enable_progress_bar: null
|
||||
enable_model_summary: null
|
||||
accumulate_grad_batches: 1
|
||||
gradient_clip_val: null
|
||||
gradient_clip_algorithm: null
|
||||
deterministic: null
|
||||
benchmark: null
|
||||
inference_mode: true
|
||||
use_distributed_sampler: true
|
||||
profiler: null
|
||||
detect_anomaly: false
|
||||
barebones: false
|
||||
plugins: null
|
||||
sync_batchnorm: false
|
||||
reload_dataloaders_every_n_epochs: 0
|
||||
default_root_dir: null
|
||||
model:
|
||||
transform: tanh
|
||||
width: 256
|
||||
depth: 8
|
||||
bias: true
|
||||
alpha: 0.0
|
||||
data:
|
||||
val_size: 10000
|
||||
train_size: 10000
|
||||
batch_size: 256
|
||||
num_workers: 3
|
||||
ckpt_path: null
|
||||
optimizer:
|
||||
class_path: torch.optim.AdamW
|
||||
init_args:
|
||||
lr: 0.001
|
||||
betas:
|
||||
- 0.9
|
||||
- 0.999
|
||||
eps: 1.0e-08
|
||||
weight_decay: 0.01
|
||||
amsgrad: false
|
||||
maximize: false
|
||||
foreach: null
|
||||
capturable: false
|
||||
differentiable: false
|
||||
fused: null
|
||||
lr_scheduler:
|
||||
class_path: lightning.pytorch.cli.ReduceLROnPlateau
|
||||
init_args:
|
||||
monitor: hp_metric
|
||||
mode: min
|
||||
factor: 0.05
|
||||
patience: 5
|
||||
threshold: 0.0001
|
||||
threshold_mode: rel
|
||||
cooldown: 10
|
||||
min_lr: 0.0
|
||||
eps: 1.0e-08
|
||||
verbose: true
|
24
model.py
24
model.py
@ -56,23 +56,29 @@ class ColorTransformerModel(L.LightningModule):
|
||||
# torch.norm(outputs - labels), torch.norm(1 + outputs - labels)
|
||||
# ).mean()
|
||||
distance = torch.norm(outputs - labels).mean()
|
||||
loss = p_loss
|
||||
|
||||
self.log("train_loss", distance)
|
||||
# Backprop with this:
|
||||
loss = p_loss
|
||||
# p_loss is unsupervised
|
||||
# distance is supervised.
|
||||
self.log("hp_metric", loss)
|
||||
self.log("p_loss", p_loss)
|
||||
return distance
|
||||
|
||||
# Log all losses individually
|
||||
self.log("train_mse", distance)
|
||||
self.log("train_pres", p_loss)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch):
|
||||
inputs, labels = batch # these are true HSV labels - no learning allowed.
|
||||
outputs = self.forward(inputs)
|
||||
distance = torch.minimum(
|
||||
torch.norm(outputs - labels), torch.norm(1 + outputs - labels)
|
||||
)
|
||||
# distance = torch.minimum(
|
||||
# torch.norm(outputs - labels), torch.norm(1 + outputs - labels)
|
||||
# )
|
||||
distance = torch.norm(outputs - labels)
|
||||
mean_loss = torch.mean(distance)
|
||||
max_loss = torch.max(distance)
|
||||
self.log("val_mean_loss", mean_loss)
|
||||
self.log("val_max_loss", max_loss)
|
||||
self.log("val_mse", mean_loss)
|
||||
self.log("val_max", max_loss)
|
||||
return mean_loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
|
Loading…
Reference in New Issue
Block a user