Browse Source

cull experimental range

new-sep-loss
Michael Pilosov, PhD 10 months ago
parent
commit
948bc31861
  1. 1
      index.html
  2. 12
      newsearch.py

1
index.html

@ -30,6 +30,7 @@
<body> <body>
<h1>Discover the Rainbow</h1> <h1>Discover the Rainbow</h1>
<div class="links"> <div class="links">
<a href="./out">Current</a>
<a href="./out1">Iteration 1</a> <a href="./out1">Iteration 1</a>
<a href="./out2">Iteration 2</a> <a href="./out2">Iteration 2</a>
<a href="./out3">Iteration 3</a> <a href="./out3">Iteration 3</a>

12
newsearch.py

@ -1,11 +1,14 @@
import subprocess import subprocess
import sys import sys
from random import sample from random import sample, seed
import numpy as np # noqa: F401 import numpy as np # noqa: F401
from lightning_sdk import Machine, Studio # noqa: F401 from lightning_sdk import Machine, Studio # noqa: F401
NUM_JOBS = 500 # consistency of randomly sampled experiments.
seed(19920921)
NUM_JOBS = 100
# reference to the current studio # reference to the current studio
# if you run outside of Lightning, you can pass the Studio name # if you run outside of Lightning, you can pass the Studio name
@ -22,10 +25,10 @@ NUM_JOBS = 500
# learning_rate_values = list(np.round(np.logspace(-5, -3, 21), 5)) # learning_rate_values = list(np.round(np.logspace(-5, -3, 21), 5))
learning_rate_values = [1e-2] learning_rate_values = [1e-2]
alpha_values = [0] alpha_values = [0]
widths = [2**k for k in range(4, 15)] widths = [2**k for k in range(4, 13)]
depths = [1, 2, 4, 8, 16] depths = [1, 2, 4, 8, 16]
# learning_rate_values = [5e-4] # learning_rate_values = [5e-4]
batch_size_values = [256] batch_size_values = [16, 64, 256]
max_epochs_values = [100] max_epochs_values = [100]
seeds = list(range(21, 1992)) seeds = list(range(21, 1992))
optimizers = [ optimizers = [
@ -67,6 +70,7 @@ python newmain.py fit \
--model.alpha {a} \ --model.alpha {a} \
--model.width {w} \ --model.width {w} \
--model.depth {d} \ --model.depth {d} \
--model.bias true \
--trainer.min_epochs 10 \ --trainer.min_epochs 10 \
--trainer.max_epochs {me} \ --trainer.max_epochs {me} \
--trainer.log_every_n_steps 3 \ --trainer.log_every_n_steps 3 \

Loading…
Cancel
Save