|
@ -24,10 +24,13 @@ NUM_JOBS = 100 |
|
|
# alpha_values = list(np.round(np.linspace(2, 4, 21), 4)) |
|
|
# alpha_values = list(np.round(np.linspace(2, 4, 21), 4)) |
|
|
# learning_rate_values = list(np.round(np.logspace(-5, -3, 21), 5)) |
|
|
# learning_rate_values = list(np.round(np.logspace(-5, -3, 21), 5)) |
|
|
learning_rate_values = [1e-3] |
|
|
learning_rate_values = [1e-3] |
|
|
alpha_values = [0] |
|
|
# learning_rate_values = [5e-4] |
|
|
|
|
|
|
|
|
|
|
|
alpha_values = [0, .25, 0.5, 0.75, 1] # alpha = 0 is unsupervised. alpha = 1 is supervised. |
|
|
widths = [2**k for k in range(4, 13)] |
|
|
widths = [2**k for k in range(4, 13)] |
|
|
depths = [1, 2, 4, 8, 16] |
|
|
depths = [1, 2, 4, 8, 16] |
|
|
# learning_rate_values = [5e-4] |
|
|
# widths, depths = [128, 256], [4, 8] |
|
|
|
|
|
|
|
|
batch_size_values = [256] |
|
|
batch_size_values = [256] |
|
|
max_epochs_values = [10] |
|
|
max_epochs_values = [10] |
|
|
seeds = list(range(21, 1992)) |
|
|
seeds = list(range(21, 1992)) |
|
|