diff --git a/model.py b/model.py index eeeadcc..48af9c6 100644 --- a/model.py +++ b/model.py @@ -56,7 +56,7 @@ class ColorTransformerModel(L.LightningModule): # torch.norm(outputs - labels), torch.norm(1 + outputs - labels) # ).mean() distance = torch.norm(outputs - labels).mean() - loss = distance + loss = p_loss self.log("train_loss", distance) self.log("hp_metric", loss) diff --git a/newsearch.py b/newsearch.py index 19d62c1..3fd09f9 100644 --- a/newsearch.py +++ b/newsearch.py @@ -6,7 +6,7 @@ import numpy as np # noqa: F401 from lightning_sdk import Machine, Studio # noqa: F401 # consistency of randomly sampled experiments. -seed(202419920921) +seed(19920921) NUM_JOBS = 100 @@ -28,8 +28,8 @@ alpha_values = [0] widths = [2**k for k in range(4, 13)] depths = [1, 2, 4, 8, 16] # learning_rate_values = [5e-4] -batch_size_values = [16, 64, 256] -max_epochs_values = [100] +batch_size_values = [256] +max_epochs_values = [10] seeds = list(range(21, 1992)) optimizers = [ "Adagrad", @@ -71,10 +71,11 @@ python newmain.py fit \ --model.width {w} \ --model.depth {d} \ --model.bias true \ +--model.transform tanh \ --trainer.min_epochs 10 \ --trainer.max_epochs {me} \ --trainer.log_every_n_steps 3 \ ---trainer.check_val_every_n_epoch 10 \ +--trainer.check_val_every_n_epoch 1 \ --trainer.limit_val_batches 50 \ --trainer.callbacks callbacks.SaveImageCallback \ --trainer.callbacks.init_args.final_dir out \