Compare commits

...

3 Commits

Author SHA1 Message Date
Michael Pilosov, PhD
d318480b7c circle norm bad for supervise? 2024-01-28 02:58:51 +00:00
Michael Pilosov, PhD
1c116f3f12 benchmark supervised again 2024-01-28 02:54:30 +00:00
Michael Pilosov, PhD
c7ffd09fb4 lr scheduler 2024-01-28 02:44:36 +00:00
2 changed files with 5 additions and 5 deletions

View File

@ -58,8 +58,8 @@ class ColorTransformerModel(L.LightningModule):
alpha = self.hparams.alpha
# N = len(outputs)
distance = circle_norm(outputs, labels).mean()
# distance = torch.norm(outputs - labels).mean()
# distance = circle_norm(outputs, labels).mean()
distance = torch.norm(outputs - labels).mean()
# Backprop with this:
loss = (1 - alpha) * p_loss + alpha * distance

View File

@ -27,12 +27,12 @@ learning_rate_values = [1e-3]
# learning_rate_values = [5e-4]
# alpha_values = [0, .25, 0.5, 0.75, 1] # alpha = 0 is unsupervised. alpha = 1 is supervised.
alpha_values = [0]
alpha_values = [1.0]
# widths = [2**k for k in range(4, 13)]
# depths = [1, 2, 4, 8, 16]
widths, depths = [512], [4]
batch_size_values = [64, 256, 1024]
batch_size_values = [256]
max_epochs_values = [100]
seeds = list(range(21, 1992))
optimizers = [
@ -73,7 +73,7 @@ for idx, params in enumerate(search_params):
python newmain.py fit \
--seed_everything {s} \
--data.batch_size {bs} \
--data.train_size 50000 \
--data.train_size 0 \
--data.val_size 10000 \
--model.alpha {a} \
--model.width {w} \