import torch from utils import PURE_RGB # def smoothness_loss(outputs): # # Sort outputs for smoothness calculation # sorted_outputs, _ = torch.sort(outputs, dim=0) # first_elements = sorted_outputs[:2] # # Concatenate the first element at the end of the sorted_outputs # extended_sorted_outputs = torch.cat((sorted_outputs, first_elements), dim=0) # # Calculate smoothness in the sorted outputs # first_derivative = torch.diff(extended_sorted_outputs, n=1, dim=0) # second_derivative = torch.diff(first_derivative, n=1, dim=0) # smoothness_loss = torch.mean(torch.abs(second_derivative)) # return smoothness_loss def preservation_loss(inputs, outputs): # Distance Preservation Component # Encourages the model to keep relative distances from the RGB space in the transformed space # Calculate RGB Norm max_rgb_distance = torch.sqrt(torch.tensor(2 + 1)) # scale to [0, 1] rgb_norm = ( torch.triu(torch.norm(inputs[:, None, :] - inputs[None, :, :], dim=-1)) / max_rgb_distance ) rgb_norm = ( rgb_norm % 1 ) # connect (0, 0, 0) and (1, 1, 1): max_rgb_distance in the RGB space # print(rgb_norm) # Calculate 1D Space Norm (modulo 1 to account for circularity) transformed_norm = torch.triu( torch.norm((outputs[:, None] - outputs[None, :]) % 1, dim=-1) ) diff = torch.abs(rgb_norm - transformed_norm) # print(diff) return torch.mean(diff) def separation_loss(red, green, blue): # Separation Component # Encourages the model to keep R, G, B values equally separated in the transformed space red, green, blue = red % 1, green % 1, blue % 1 red_green_distance = torch.min( torch.abs((red - green)), torch.abs((1 + red - green)) ) red_blue_distance = torch.min(torch.abs((red - blue)), torch.abs((1 + red - blue))) green_blue_distance = torch.min( torch.abs((green - blue)), torch.abs((1 + green - blue)) ) # print(red_green_distance, red_blue_distance, green_blue_distance) # we want these distances to be equal to one another return ( torch.abs(red_green_distance - red_blue_distance) + torch.abs(red_green_distance - green_blue_distance) + torch.abs(red_blue_distance - green_blue_distance) ) def calculate_separation_loss(model): # Wrapper function to calculate separation loss outputs = model(PURE_RGB) red, green, blue = outputs[0], outputs[1], outputs[2] return separation_loss(red, green, blue) if __name__ == "__main__": # test preservation loss # create torch vector containing pure R, G, B. test_input = torch.tensor( [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0], [1, 1, 1]], dtype=torch.float32 ) test_output = torch.tensor([[0], [1 / 3], [2 / 3], [0], [0]], dtype=torch.float32) print(preservation_loss(test_input[:3], test_output[:3])) rgb = torch.tensor([[0], [1 / 3], [2 / 3]], dtype=torch.float32) print(separation_loss(red=rgb[0], green=rgb[1], blue=rgb[2]))