import pytorch_lightning as pl import torch import torch.nn as nn from torch.optim.lr_scheduler import ReduceLROnPlateau from losses import preservation_loss, smoothness_loss class ColorTransformerModel(pl.LightningModule): def __init__(self, params): super().__init__() self.save_hyperparameters(params) # Model layers self.layers = nn.Sequential( nn.Linear(5, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, 1), ) def forward(self, x): x = self.layers(x) x = (torch.sin(x) + 1) / 2 return x # class ColorTransformerModel(pl.LightningModule): # def __init__(self, alpha, learning_rate): # super().__init__() # self.save_hyperparameters() # # Embedding layer to expand the input dimensions # self.embedding = nn.Linear(3, 128) # # Transformer block # transformer_layer = nn.TransformerEncoderLayer( # d_model=128, nhead=4, dim_feedforward=512, dropout=0.1 # ) # self.transformer_encoder = nn.TransformerEncoder( # transformer_layer, num_layers=3 # ) # # Final linear layer to map back to 1D space # self.final_layer = nn.Linear(128, 1) # def forward(self, x): # # Embedding the input # x = self.embedding(x) # # Adjusting the shape for the transformer # x = x.unsqueeze(1) # Adding a fake sequence dimension # # Passing through the transformer # x = self.transformer_encoder(x) # # Reshape back to original shape # x = x.squeeze(1) # # Final linear layer # x = self.final_layer(x) # # Apply sigmoid activation to ensure output is in (0, 1) # x = torch.sigmoid(x) # return x def training_step(self, batch, batch_idx): inputs, labels = batch # x are the RGB inputs, labels are the strings outputs = self.forward(inputs) s_loss = smoothness_loss(outputs) p_loss = preservation_loss( inputs, outputs, ) alpha = self.hparams.alpha loss = p_loss + alpha * s_loss self.log("hp_metric", p_loss) self.log("train_loss", loss) return loss def configure_optimizers(self): optimizer = torch.optim.AdamW( self.parameters(), lr=self.hparams.learning_rate, weight_decay=1e-2 ) lr_scheduler = ReduceLROnPlateau( optimizer, mode="min", factor=0.1, patience=10, verbose=True ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": lr_scheduler, "monitor": "train_loss", # Specify the metric to monitor }, }