import matplotlib.colors as mcolors import torch from torch.utils.data import DataLoader, TensorDataset def extract_colors(): # Extracting the list of xkcd colors as RGB triples xkcd_colors = mcolors.XKCD_COLORS rgb_values = [mcolors.to_rgb(color) for color in xkcd_colors.values()] # Extracting the list of xkcd color names xkcd_color_names = list(xkcd_colors.keys()) # Convert the list of RGB triples to a PyTorch tensor rgb_tensor = torch.tensor(rgb_values, dtype=torch.float32) return rgb_tensor, xkcd_color_names def create_dataloader(**kwargs): rgb_tensor, _ = extract_colors() # Creating a dataset and data loader dataset = TensorDataset(rgb_tensor, torch.zeros(len(rgb_tensor))) # Dummy labels train_dataloader = DataLoader(dataset, **kwargs) return train_dataloader def create_named_dataloader(**kwargs): rgb_tensor, xkcd_color_names = extract_colors() # Creating a dataset with RGB values and their corresponding color names dataset_with_names = [ (rgb_tensor[i], xkcd_color_names[i]) for i in range(len(rgb_tensor)) ] train_dataloader_with_names = DataLoader(dataset_with_names, **kwargs) return train_dataloader_with_names if __name__ == "__main__": batch_size = 4 train_dataloader = create_dataloader(batch_size=batch_size, shuffle=True) train_dataloader_with_names = create_named_dataloader( batch_size=batch_size, shuffle=True ) # Extract a sample from the DataLoader sample_data = next(iter(train_dataloader)) # Sample RGB values and their corresponding dummy labels sample_rgb_values, _ = sample_data print(sample_rgb_values) # Extract a sample from the new DataLoader sample_data_with_names = next(iter(train_dataloader_with_names)) # Sample RGB values and their corresponding color names sample_rgb_values_with_names, sample_color_names = sample_data_with_names print(sample_rgb_values_with_names, sample_color_names)