from pathlib import Path from lightning import Callback from check import create_circle class SaveImageCallback(Callback): def __init__(self, save_interval=1, final_dir: str = None): self.save_interval = save_interval self.final_dir = final_dir def on_train_epoch_end(self, trainer, pl_module): epoch = trainer.current_epoch if self.save_interval <= 0: return None if epoch % self.save_interval == 0: # Set the model to eval mode for generating the image pl_module.eval() # Save the image # if pl_module.trainer.logger: # # else: # version = 0 fname = Path(pl_module.trainer.logger.log_dir) / Path(f"e{epoch:04d}") create_circle(pl_module, fname=fname, dpi=300, figsize=(6, 6)) # Make sure to set it back to train mode pl_module.train() def on_train_end(self, trainer, pl_module): if self.final_dir: version = pl_module.trainer.logger.version fname = Path(f"{self.final_dir}") / Path(f"v{version}") pl_module.eval() create_circle(pl_module, fname=fname, dpi=300, figsize=(6, 6)) if self.save_interval > 0: import os log_dir = str(Path(pl_module.trainer.logger.log_dir)) fps = 12 _cmd = f'ffmpeg -r {fps} -f image2 -i {log_dir}/e%04d.png -vcodec libx264 -crf 25 -pix_fmt yuv420p -vf "scale=1920:1080:force_original_aspect_ratio=decrease,pad=1920:1080:(ow-iw)/2:(oh-ih)/2:color=white" {log_dir}/a{version}.mp4' os.system(_cmd) # os.system( # f'ffmpeg -i {log_dir}/e%04d.png -c:v libx264 -vf "fps={fps},format=yuv420p,pad=ceil(iw/2)*2:ceil(ih/2)*2" {log_dir}/a{version}.mp4' # )