import glob import shutil from pathlib import Path from check import make_image def get_exps(pattern: str, splitter: str = "_", dry_run: bool = True): basedir = "/teamspace/jobs/" chkpt_basedir = "/work/colors/lightning_logs/" location = basedir + pattern res = glob.glob(location) location = location.replace("*", "") H = [] # hyperparams used # print(res) for r in res: d = r.replace(location, "").split(splitter) d = list(float(_d) for _d in d) d[0] = int(d[0]) H.append(d) for i, r in enumerate(res): dir_path = Path( f"/teamspace/studios/this_studio/colors/lightning_logs/version_{i}/" ) dir_path.mkdir(parents=True, exist_ok=True) g = glob.glob(r + chkpt_basedir + "*") logs = glob.glob(g[0] + "/events*")[-1] source_path = Path(logs) print(logs) if not dry_run: c = g[0] + "/checkpoints" latest_checkpoint = glob.glob(c + "/*")[-1] print(latest_checkpoint) if not dry_run: shutil.copy(source_path, dir_path) make_image(latest_checkpoint, f"out/version_{i}") # make_image(latest_checkpoint, f"out/version_{i}b", color=False) else: print("Would copy", source_path, dir_path) return H if __name__ == "__main__": D = get_exps("color_*", "_") import numpy as np D = np.array(D) # print(len(D), "\n", D) import pandas as pd df = pd.DataFrame(D) df.columns = ["batch_size", "alpha", "learning_rate"] df.to_csv("experiments.csv") print(df)