from lightning_sdk import Studio, Machine from random import sample NUM_JOBS = 4 # reference to the current studio # if you run outside of Lightning, you can pass the Studio name studio = Studio() # use the jobs plugin studio.install_plugin('jobs') job_plugin = studio.installed_plugins['jobs'] # do a sweep over learning rates # Define the ranges or sets of values for each hyperparameter alpha_values = [0.1, 0.3, 0.5, 0.7, 0.9] distinct_threshold_values = [0.5, 0.6, 0.7, 0.8] learning_rate_values = [1e-6, 1-e5, 1e-4, 1e-3, 1e-2] batch_size_values = [32, 64, 128] max_epochs_values = [10000] # Generate all possible combinations of hyperparameters all_params = [(alpha, dt, lr, bs, me) for alpha in alpha_values for dt in distinct_threshold_values for lr in learning_rate_values for bs in batch_size_values for me in max_epochs_values] # perform random search with a limit random_search_params = sample(search_params, NUM_JOBS) # start all jobs on an A10G GPU with names containing an index for idx, (a, thresh, lr, bs, max_epochs) in enumerate(search_params): cmd = f'python main.py --alpha {a} -D {thresh} --lr {lr} --bs {bs} --max_epochs {max_epochs}' job_name = f'color-exp-{idx}' job_plugin.run(cmd, machine=Machine.T4, name=job_name)