You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
3.0 KiB
99 lines
3.0 KiB
import pytorch_lightning as pl
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
|
|
|
from losses import calculate_separation_loss, preservation_loss
|
|
|
|
|
|
class ColorTransformerModel(pl.LightningModule):
|
|
def __init__(self, params):
|
|
super().__init__()
|
|
self.save_hyperparameters(params)
|
|
|
|
# Model layers
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(5, 128),
|
|
nn.Linear(128, 3),
|
|
nn.ReLU(),
|
|
nn.Linear(3, 64),
|
|
nn.Linear(64, 128),
|
|
nn.Linear(128, 256),
|
|
nn.Linear(256, 128),
|
|
nn.ReLU(),
|
|
nn.Linear(128, 1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.layers(x)
|
|
x = (torch.sin(x) + 1) / 2
|
|
return x
|
|
|
|
# class ColorTransformerModel(pl.LightningModule):
|
|
# def __init__(self, alpha, learning_rate):
|
|
# super().__init__()
|
|
# self.save_hyperparameters()
|
|
|
|
# # Embedding layer to expand the input dimensions
|
|
# self.embedding = nn.Linear(3, 128)
|
|
|
|
# # Transformer block
|
|
# transformer_layer = nn.TransformerEncoderLayer(
|
|
# d_model=128, nhead=4, dim_feedforward=512, dropout=0.1
|
|
# )
|
|
# self.transformer_encoder = nn.TransformerEncoder(
|
|
# transformer_layer, num_layers=3
|
|
# )
|
|
|
|
# # Final linear layer to map back to 1D space
|
|
# self.final_layer = nn.Linear(128, 1)
|
|
|
|
# def forward(self, x):
|
|
# # Embedding the input
|
|
# x = self.embedding(x)
|
|
|
|
# # Adjusting the shape for the transformer
|
|
# x = x.unsqueeze(1) # Adding a fake sequence dimension
|
|
|
|
# # Passing through the transformer
|
|
# x = self.transformer_encoder(x)
|
|
|
|
# # Reshape back to original shape
|
|
# x = x.squeeze(1)
|
|
|
|
# # Final linear layer
|
|
# x = self.final_layer(x)
|
|
|
|
# # Apply sigmoid activation to ensure output is in (0, 1)
|
|
# x = torch.sigmoid(x)
|
|
|
|
# return x
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
inputs, labels = batch # x are the RGB inputs, labels are the strings
|
|
outputs = self.forward(inputs)
|
|
s_loss = calculate_separation_loss(model=self)
|
|
p_loss = preservation_loss(
|
|
inputs,
|
|
outputs,
|
|
)
|
|
alpha = self.hparams.alpha
|
|
loss = (p_loss + alpha * s_loss) / (1 + alpha)
|
|
self.log("hp_metric", loss)
|
|
self.log("train_loss", loss)
|
|
return loss
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.AdamW(
|
|
self.parameters(), lr=self.hparams.learning_rate, weight_decay=1e-2
|
|
)
|
|
lr_scheduler = ReduceLROnPlateau(
|
|
optimizer, mode="min", factor=0.1, patience=10, verbose=True
|
|
)
|
|
return {
|
|
"optimizer": optimizer,
|
|
"lr_scheduler": {
|
|
"scheduler": lr_scheduler,
|
|
"monitor": "train_loss", # Specify the metric to monitor
|
|
},
|
|
}
|
|
|