You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

66 lines
1.7 KiB

import argparse
import pytorch_lightning as pl
from dataloader import create_named_dataloader as init_data
from model import ColorTransformerModel
def parse_args():
# Define argument parser
parser = argparse.ArgumentParser(description="Color Transformer Training Script")
# Add arguments
parser.add_argument(
"--bs",
type=int,
default=64,
help="Input batch size for training",
)
parser.add_argument(
"-a", "--alpha", type=float, default=0.5, help="Alpha value for loss function"
)
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate")
parser.add_argument(
"-e", "--max_epochs", type=int, default=1000, help="Number of epochs to train"
)
parser.add_argument(
"-L", "--log_every_n_steps", type=int, default=5, help="Logging frequency"
)
parser.add_argument(
"-w",
"--num_workers",
type=int,
default=3,
help="Number of workers for data loading",
)
# Parse arguments
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
# Initialize data loader with parsed arguments
train_dataloader = init_data(
batch_size=args.bs,
shuffle=True,
num_workers=args.num_workers,
)
# Initialize model with parsed arguments
model = ColorTransformerModel(
alpha=args.alpha,
learning_rate=args.lr,
)
# Initialize trainer with parsed arguments
trainer = pl.Trainer(
max_epochs=args.max_epochs,
log_every_n_steps=args.log_every_n_steps,
)
# Train the model
trainer.fit(model, train_dataloader)