control systems with MUD points
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

50 lines
1.5 KiB

3 years ago
#!/usr/bin/env python
import pickle
import gym
import numpy as np
import pandas as pd
from scipy.stats import gaussian_kde as gkde
3 years ago
from scipy.stats import norm
3 years ago
def train(data):
D = pd.DataFrame(data)
3 years ago
sd = np.array([1.0, 0.5, 0.2, 0.5])
D["qoi"] = D["obs"].apply(lambda o: np.sum(o, axis=0) / sd / np.sqrt(len(o)))
3 years ago
D["i"] = D["lam"].apply(lambda l: norm.pdf(l).prod())
D["o"] = D["qoi"].apply(lambda q: norm.pdf(q).prod())
Q = np.array(D["qoi"].to_list()).reshape(-1, 4)
K = [gkde(Q[:, i]) for i in range(4)]
D["p"] = D["qoi"].apply(lambda q: np.prod([K[i].pdf(q[i]) for i in range(4)]))
D["u"] = D["i"] * D["o"] / D["p"]
mud_point_idx = D["u"].argmax()
mud_point = D["lam"].iloc[mud_point_idx]
3 years ago
print(f"MUD Point {mud_point_idx}: {mud_point}")
3 years ago
return mud_point
3 years ago
def test(decision=np.array([-0.09, -0.71, -0.43, -0.74]), seed=1992):
3 years ago
env = gym.make("CartPole-v1")
observation, info = env.reset(seed=seed, return_info=True)
3 years ago
score = 0
3 years ago
for i in range(10000):
action = 1 if decision.T @ observation < 0 else 0
observation, reward, done, info = env.step(action)
score += reward
env.render()
if done:
if score == 500:
print("WIN")
else:
3 years ago
print(f"LOSE: {int(score)}")
score = 0 # reset score
3 years ago
observation, info = env.reset(return_info=True)
env.close()
if __name__ == "__main__":
3 years ago
data = pickle.load(open("data.pkl", "rb"))
3 years ago
mud_point = train(data)
test(mud_point)