Browse Source

notebook split

feature/notebook
Michael Pilosov 3 years ago
parent
commit
05118810ad
  1. 86
      DemoGym.ipynb
  2. 74
      DemoMUD.ipynb

86
DemoGym.ipynb

@ -0,0 +1,86 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "71383e8d-63f1-462c-bd77-688d8d34a60a",
"metadata": {},
"source": [
"# Demonstration of `gym`: Visualize Interactive Results in Jupyter Notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eae51654-4ccf-44ed-aaac-f1d993d7e4a1",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"from pyvirtualdisplay import Display\n",
"display = Display(visible=0, size=(1400, 900))\n",
"display.start()\n",
"\n",
"is_ipython = 'inline' in plt.get_backend()\n",
"if is_ipython:\n",
" from IPython import display\n",
"\n",
"plt.ion()\n",
"\n",
"# Load the gym environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "be872e01-e4fd-4940-874e-d46e97fb3519",
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import random\n",
"%matplotlib inline\n",
"\n",
"env = gym.make('LunarLander-v2')\n",
"env.seed(23)\n",
"\n",
"# Let's watch how an untrained agent moves around\n",
"\n",
"state = env.reset()\n",
"img = plt.imshow(env.render(mode='rgb_array'))\n",
"for j in range(200):\n",
"# action = agent.act(state)\n",
" action = random.choice(range(4))\n",
" img.set_data(env.render(mode='rgb_array')) \n",
" plt.axis('off')\n",
" display.display(plt.gcf())\n",
" display.clear_output(wait=True)\n",
" state, reward, done, _ = env.step(action)\n",
" if done:\n",
" break\n",
"\n",
"env.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

74
DemoMUD.ipynb

@ -0,0 +1,74 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2e848ca9-c915-4aa2-a7cc-a5654ed06863",
"metadata": {},
"source": [
"# Demonstration of Training and Testing"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9506e99-a947-4f69-8355-a3ce696793fa",
"metadata": {},
"outputs": [],
"source": [
"from main import train, test\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de500d9e-40d1-4b6b-900f-96c2ec69e464",
"metadata": {},
"outputs": [],
"source": [
"data = pickle.load(open(\"data.pkl\", \"rb\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39ca7791-c844-4231-9f3b-e8ae80fe8103",
"metadata": {},
"outputs": [],
"source": [
"mud_point = train(data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d8c70ab-d055-418c-b67e-ba5109d989f3",
"metadata": {},
"outputs": [],
"source": [
"test(mud_point)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading…
Cancel
Save