Browse Source

linting

feature/notebook
Michael Pilosov 3 years ago
parent
commit
53d2e1fdcb
  1. 22
      main.py

22
main.py

@ -10,19 +10,19 @@ from scipy.stats import norm
def train(data):
D = pd.DataFrame(data)
D['qoi'] = D['obs'].apply(lambda o: np.sum(o,axis=0)/np.sqrt(len(o)))
D['i'] = D['lam'].apply(lambda l: norm.pdf(l).prod())
D['o'] = D['qoi'].apply(lambda q: norm.pdf(q).prod())
Q = np.array(D['qoi'].to_list()).reshape(-1,4)
K = [gkde(Q[:,i]) for i in range(4)]
D['p'] = D['qoi'].apply(lambda q: np.prod([ K[i].pdf(q[i]) for i in range(4)]))
D['u'] = D['i']*D['o']/D['p']
mud_point_idx = D['u'].argmax()
mud_point = D['lam'].iloc[mud_point_idx]
D["qoi"] = D["obs"].apply(lambda o: np.sum(o, axis=0) / np.sqrt(len(o)))
D["i"] = D["lam"].apply(lambda l: norm.pdf(l).prod())
D["o"] = D["qoi"].apply(lambda q: norm.pdf(q).prod())
Q = np.array(D["qoi"].to_list()).reshape(-1, 4)
K = [gkde(Q[:, i]) for i in range(4)]
D["p"] = D["qoi"].apply(lambda q: np.prod([K[i].pdf(q[i]) for i in range(4)]))
D["u"] = D["i"] * D["o"] / D["p"]
mud_point_idx = D["u"].argmax()
mud_point = D["lam"].iloc[mud_point_idx]
return mud_point
def test(decision=np.array([-0.09, -0.71, -0.43 , -0.74]), seed=1992):
def test(decision=np.array([-0.09, -0.71, -0.43, -0.74]), seed=1992):
env = gym.make("CartPole-v1")
observation, info = env.reset(seed=seed, return_info=True)
score = 0
@ -42,7 +42,7 @@ def test(decision=np.array([-0.09, -0.71, -0.43 , -0.74]), seed=1992):
if __name__ == "__main__":
data = pickle.load(open('data.pkl','rb'))
data = pickle.load(open("data.pkl", "rb"))
mud_point = train(data)
print(f"MUD Point: {mud_point}")
test(mud_point)

Loading…
Cancel
Save