|
@ -10,7 +10,8 @@ from scipy.stats import norm |
|
|
|
|
|
|
|
|
def train(data): |
|
|
def train(data): |
|
|
D = pd.DataFrame(data) |
|
|
D = pd.DataFrame(data) |
|
|
D["qoi"] = D["obs"].apply(lambda o: np.sum(o, axis=0) / np.sqrt(len(o))) |
|
|
sd = np.array([1.0, 0.25, 0.5, 0.1]) |
|
|
|
|
|
D["qoi"] = D["obs"].apply(lambda o: np.sum(o, axis=0) / sd / np.sqrt(len(o))) |
|
|
D["i"] = D["lam"].apply(lambda l: norm.pdf(l).prod()) |
|
|
D["i"] = D["lam"].apply(lambda l: norm.pdf(l).prod()) |
|
|
D["o"] = D["qoi"].apply(lambda q: norm.pdf(q).prod()) |
|
|
D["o"] = D["qoi"].apply(lambda q: norm.pdf(q).prod()) |
|
|
Q = np.array(D["qoi"].to_list()).reshape(-1, 4) |
|
|
Q = np.array(D["qoi"].to_list()).reshape(-1, 4) |
|
@ -19,6 +20,7 @@ def train(data): |
|
|
D["u"] = D["i"] * D["o"] / D["p"] |
|
|
D["u"] = D["i"] * D["o"] / D["p"] |
|
|
mud_point_idx = D["u"].argmax() |
|
|
mud_point_idx = D["u"].argmax() |
|
|
mud_point = D["lam"].iloc[mud_point_idx] |
|
|
mud_point = D["lam"].iloc[mud_point_idx] |
|
|
|
|
|
print(f"MUD Point ({mud_point_idx}: {mud_point}") |
|
|
return mud_point |
|
|
return mud_point |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -44,5 +46,4 @@ def test(decision=np.array([-0.09, -0.71, -0.43, -0.74]), seed=1992): |
|
|
if __name__ == "__main__": |
|
|
if __name__ == "__main__": |
|
|
data = pickle.load(open("data.pkl", "rb")) |
|
|
data = pickle.load(open("data.pkl", "rb")) |
|
|
mud_point = train(data) |
|
|
mud_point = train(data) |
|
|
print(f"MUD Point: {mud_point}") |
|
|
|
|
|
test(mud_point) |
|
|
test(mud_point) |
|
|