mm
3 years ago
1 changed files with 47 additions and 0 deletions
@ -0,0 +1,47 @@ |
|||||
|
#!/usr/bin/env python |
||||
|
import pickle |
||||
|
|
||||
|
import gym |
||||
|
import numpy as np |
||||
|
import pandas as pd |
||||
|
from scipy.stats import gaussian_kde as gkde |
||||
|
|
||||
|
|
||||
|
def train(data): |
||||
|
D = pd.DataFrame(data) |
||||
|
D['qoi'] = D['obs'].apply(lambda o: np.sum(o,axis=0)/np.sqrt(len(o))) |
||||
|
D['i'] = D['lam'].apply(lambda l: norm.pdf(l).prod()) |
||||
|
D['o'] = D['qoi'].apply(lambda q: norm.pdf(q).prod()) |
||||
|
Q = np.array(D['qoi'].to_list()).reshape(-1,4) |
||||
|
K = [gkde(Q[:,i]) for i in range(4)] |
||||
|
D['p'] = D['qoi'].apply(lambda q: np.prod([ K[i].pdf(q[i]) for i in range(4)])) |
||||
|
D['u'] = D['i']*D['o']/D['p'] |
||||
|
mud_point_idx = D['u'].argmax() |
||||
|
mud_point = D['lam'].iloc[mud_point_idx] |
||||
|
return mud_point |
||||
|
|
||||
|
|
||||
|
def test(decision=np.array([-0.09, -0.71, -0.43 , -0.74]), seed=1992): |
||||
|
env = gym.make("CartPole-v1") |
||||
|
observation, info = env.reset(seed=seed, return_info=True) |
||||
|
score = 1 |
||||
|
for i in range(10000): |
||||
|
action = 1 if decision.T @ observation < 0 else 0 |
||||
|
observation, reward, done, info = env.step(action) |
||||
|
score += reward |
||||
|
env.render() |
||||
|
if done: |
||||
|
if score == 500: |
||||
|
print("WIN") |
||||
|
else: |
||||
|
print("LOSE: {int(score)}") |
||||
|
score = 1 # reset score |
||||
|
observation, info = env.reset(return_info=True) |
||||
|
env.close() |
||||
|
|
||||
|
|
||||
|
if __name__ == "__main__": |
||||
|
data = pickle.load(open('data.pkl','rb')) |
||||
|
mud_point = train(data) |
||||
|
print("MUD Point: {mud_point}") |
||||
|
test(mud_point) |
Loading…
Reference in new issue