add notebook, support interactive output to enable visualizing results #1

Merged
mm merged 3 commits from feature/notebook into main 2022-05-26 15:12:56 +00:00
5 changed files with 190 additions and 1 deletions

86
DemoGym.ipynb Normal file
View File

@ -0,0 +1,86 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "71383e8d-63f1-462c-bd77-688d8d34a60a",
"metadata": {},
"source": [
"# Demonstration of `gym`: Visualize Interactive Results in Jupyter Notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eae51654-4ccf-44ed-aaac-f1d993d7e4a1",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"from pyvirtualdisplay import Display\n",
"display = Display(visible=0, size=(1400, 900))\n",
"display.start()\n",
"\n",
"is_ipython = 'inline' in plt.get_backend()\n",
"if is_ipython:\n",
" from IPython import display\n",
"\n",
"plt.ion()\n",
"\n",
"# Load the gym environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "be872e01-e4fd-4940-874e-d46e97fb3519",
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import random\n",
"%matplotlib inline\n",
"\n",
"env = gym.make('LunarLander-v2')\n",
"env.seed(23)\n",
"\n",
"# Let's watch how an untrained agent moves around\n",
"\n",
"state = env.reset()\n",
"img = plt.imshow(env.render(mode='rgb_array'))\n",
"for j in range(200):\n",
"# action = agent.act(state)\n",
" action = random.choice(range(4))\n",
" img.set_data(env.render(mode='rgb_array')) \n",
" plt.axis('off')\n",
" display.display(plt.gcf())\n",
" display.clear_output(wait=True)\n",
" state, reward, done, _ = env.step(action)\n",
" if done:\n",
" break\n",
"\n",
"env.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

74
DemoMUD.ipynb Normal file
View File

@ -0,0 +1,74 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2e848ca9-c915-4aa2-a7cc-a5654ed06863",
"metadata": {},
"source": [
"# Demonstration of Training and Testing"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9506e99-a947-4f69-8355-a3ce696793fa",
"metadata": {},
"outputs": [],
"source": [
"from main import train, test\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de500d9e-40d1-4b6b-900f-96c2ec69e464",
"metadata": {},
"outputs": [],
"source": [
"data = pickle.load(open(\"data.pkl\", \"rb\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39ca7791-c844-4231-9f3b-e8ae80fe8103",
"metadata": {},
"outputs": [],
"source": [
"mud_point = train(data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d8c70ab-d055-418c-b67e-ba5109d989f3",
"metadata": {},
"outputs": [],
"source": [
"test(mud_point)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -45,3 +45,7 @@ Using the following presumptions, we can establish better values for the "data v
> The angular momentum of the pole is the most important thing to stabilize. > The angular momentum of the pole is the most important thing to stabilize.
# headless mode
Run `./headless.sh` (requires `sudo`) to install virtual displays so you can view results in a Jupyter notebook.

3
headless.sh Executable file
View File

@ -0,0 +1,3 @@
#!/bin/sh
sudo apt update && sudo apt install build-essential xvfb swig
pip install box2d-py pyvirtualdisplay

24
main.py
View File

@ -7,6 +7,20 @@ import pandas as pd
from scipy.stats import gaussian_kde as gkde from scipy.stats import gaussian_kde as gkde
from scipy.stats import norm from scipy.stats import norm
import matplotlib.pyplot as plt
try:
from pyvirtualdisplay import Display
display = Display(visible=0, size=(1400, 900))
display.start()
except ImportError:
pass
is_ipython = 'inline' in plt.get_backend()
if is_ipython:
from IPython import display
plt.ion()
def train(data): def train(data):
D = pd.DataFrame(data) D = pd.DataFrame(data)
@ -28,11 +42,19 @@ def test(decision=np.array([-0.09, -0.71, -0.43, -0.74]), seed=1992):
env = gym.make("CartPole-v1") env = gym.make("CartPole-v1")
observation, info = env.reset(seed=seed, return_info=True) observation, info = env.reset(seed=seed, return_info=True)
score = 0 score = 0
if is_ipython:
img = plt.imshow(env.render(mode='rgb_array'))
for i in range(10000): for i in range(10000):
action = 1 if decision.T @ observation < 0 else 0 action = 1 if decision.T @ observation < 0 else 0
observation, reward, done, info = env.step(action) observation, reward, done, info = env.step(action)
score += reward score += reward
env.render() if not is_ipython:
env.render()
else:
img.set_data(env.render(mode='rgb_array'))
plt.axis('off')
display.display(plt.gcf())
display.clear_output(wait=True)
if done: if done:
if score == 500: if score == 500:
print("WIN") print("WIN")