#!/usr/bin/env python import pickle import gym import numpy as np import pandas as pd from scipy.stats import gaussian_kde as gkde from scipy.stats import norm def train(data): D = pd.DataFrame(data) D['qoi'] = D['obs'].apply(lambda o: np.sum(o,axis=0)/np.sqrt(len(o))) D['i'] = D['lam'].apply(lambda l: norm.pdf(l).prod()) D['o'] = D['qoi'].apply(lambda q: norm.pdf(q).prod()) Q = np.array(D['qoi'].to_list()).reshape(-1,4) K = [gkde(Q[:,i]) for i in range(4)] D['p'] = D['qoi'].apply(lambda q: np.prod([ K[i].pdf(q[i]) for i in range(4)])) D['u'] = D['i']*D['o']/D['p'] mud_point_idx = D['u'].argmax() mud_point = D['lam'].iloc[mud_point_idx] return mud_point def test(decision=np.array([-0.09, -0.71, -0.43 , -0.74]), seed=1992): env = gym.make("CartPole-v1") observation, info = env.reset(seed=seed, return_info=True) score = 0 for i in range(10000): action = 1 if decision.T @ observation < 0 else 0 observation, reward, done, info = env.step(action) score += reward env.render() if done: if score == 500: print("WIN") else: print(f"LOSE: {int(score)}") score = 0 # reset score observation, info = env.reset(return_info=True) env.close() if __name__ == "__main__": data = pickle.load(open('data.pkl','rb')) mud_point = train(data) print(f"MUD Point: {mud_point}") test(mud_point)