{ "cells": [ { "cell_type": "markdown", "id": "71383e8d-63f1-462c-bd77-688d8d34a60a", "metadata": {}, "source": [ "# Demonstration of `gym`: Visualize Interactive Results in Jupyter Notebook" ] }, { "cell_type": "code", "execution_count": null, "id": "eae51654-4ccf-44ed-aaac-f1d993d7e4a1", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from pyvirtualdisplay import Display\n", "display = Display(visible=0, size=(1400, 900))\n", "display.start()\n", "\n", "is_ipython = 'inline' in plt.get_backend()\n", "if is_ipython:\n", " from IPython import display\n", "\n", "plt.ion()\n", "\n", "# Load the gym environment" ] }, { "cell_type": "code", "execution_count": null, "id": "be872e01-e4fd-4940-874e-d46e97fb3519", "metadata": {}, "outputs": [], "source": [ "import gym\n", "import random\n", "%matplotlib inline\n", "\n", "env = gym.make('LunarLander-v2')\n", "env.seed(23)\n", "\n", "# Let's watch how an untrained agent moves around\n", "\n", "state = env.reset()\n", "img = plt.imshow(env.render(mode='rgb_array'))\n", "for j in range(200):\n", "# action = agent.act(state)\n", " action = random.choice(range(4))\n", " img.set_data(env.render(mode='rgb_array')) \n", " plt.axis('off')\n", " display.display(plt.gcf())\n", " display.clear_output(wait=True)\n", " state, reward, done, _ = env.step(action)\n", " if done:\n", " break\n", "\n", "env.close()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }