|
|
@ -6,7 +6,7 @@ import numpy as np # noqa: F401 |
|
|
|
from lightning_sdk import Machine, Studio # noqa: F401 |
|
|
|
|
|
|
|
# consistency of randomly sampled experiments. |
|
|
|
seed(19920921) |
|
|
|
seed(202419920921) |
|
|
|
|
|
|
|
NUM_JOBS = 100 |
|
|
|
|
|
|
@ -23,7 +23,7 @@ NUM_JOBS = 100 |
|
|
|
# Define the ranges or sets of values for each hyperparameter |
|
|
|
# alpha_values = list(np.round(np.linspace(2, 4, 21), 4)) |
|
|
|
# learning_rate_values = list(np.round(np.logspace(-5, -3, 21), 5)) |
|
|
|
learning_rate_values = [1e-2] |
|
|
|
learning_rate_values = [1e-3] |
|
|
|
alpha_values = [0] |
|
|
|
widths = [2**k for k in range(4, 13)] |
|
|
|
depths = [1, 2, 4, 8, 16] |
|
|
@ -65,8 +65,8 @@ for idx, params in enumerate(search_params): |
|
|
|
python newmain.py fit \ |
|
|
|
--seed_everything {s} \ |
|
|
|
--data.batch_size {bs} \ |
|
|
|
--data.train_size 0 \ |
|
|
|
--data.val_size 100000 \ |
|
|
|
--data.train_size 10000 \ |
|
|
|
--data.val_size 10000 \ |
|
|
|
--model.alpha {a} \ |
|
|
|
--model.width {w} \ |
|
|
|
--model.depth {d} \ |
|
|
|