Browse Source

track experiments that ran

new-sep-loss
Michael Pilosov 11 months ago
parent
commit
eff09c940b
  1. 25
      experiments.csv
  2. 20
      scrape.py

25
experiments.csv

@ -0,0 +1,25 @@
,batch_size,alpha,learning_rate
0,32.0,0.3,0.0001
1,32.0,0.3,0.01
2,32.0,0.9,1e-06
3,32.0,0.7,0.001
4,64.0,0.5,0.001
5,64.0,0.1,1e-06
6,32.0,0.1,0.001
7,128.0,0.5,1e-06
8,128.0,0.7,0.001
9,128.0,0.9,1e-05
10,128.0,0.1,1e-06
11,128.0,0.3,1e-06
12,64.0,0.3,0.01
13,64.0,0.1,1e-06
14,128.0,0.5,0.001
15,32.0,0.3,1e-05
16,32.0,0.7,1e-06
17,32.0,0.3,1e-06
18,64.0,0.3,0.0001
19,64.0,0.3,1e-06
20,128.0,0.5,1e-05
21,32.0,0.1,0.01
22,64.0,0.1,1e-05
23,64.0,0.3,0.001
1 batch_size alpha learning_rate
2 0 32.0 0.3 0.0001
3 1 32.0 0.3 0.01
4 2 32.0 0.9 1e-06
5 3 32.0 0.7 0.001
6 4 64.0 0.5 0.001
7 5 64.0 0.1 1e-06
8 6 32.0 0.1 0.001
9 7 128.0 0.5 1e-06
10 8 128.0 0.7 0.001
11 9 128.0 0.9 1e-05
12 10 128.0 0.1 1e-06
13 11 128.0 0.3 1e-06
14 12 64.0 0.3 0.01
15 13 64.0 0.1 1e-06
16 14 128.0 0.5 0.001
17 15 32.0 0.3 1e-05
18 16 32.0 0.7 1e-06
19 17 32.0 0.3 1e-06
20 18 64.0 0.3 0.0001
21 19 64.0 0.3 1e-06
22 20 128.0 0.5 1e-05
23 21 32.0 0.1 0.01
24 22 64.0 0.1 1e-05
25 23 64.0 0.3 0.001

20
scrape.py

@ -29,15 +29,25 @@ def get_exps(pattern: str, splitter: str = "_"):
# print(latest_checkpoint) # print(latest_checkpoint)
logs = glob.glob(g[0] + "/events*")[-1] logs = glob.glob(g[0] + "/events*")[-1]
print(logs) print(logs)
# source_path = Path(logs) source_path = Path(logs)
# print("Would copy", source_path, dir_path) print("Would copy", source_path, dir_path)
# shutil.copy(source_path, dir_path) # shutil.copy(source_path, dir_path)
make_image(latest_checkpoint, f"out/version_{i}") # make_image(latest_checkpoint, f"out/version_{i}")
make_image(latest_checkpoint, f"out/version_{i}b", color=False) # make_image(latest_checkpoint, f"out/version_{i}b", color=False)
return H return H
if __name__ == "__main__": if __name__ == "__main__":
D = get_exps("color_*", "_") D = get_exps("color_*", "_")
print(len(D), D)
import numpy as np
D = np.array(D)
# print(len(D), "\n", D)
import pandas as pd
df = pd.DataFrame(D)
df.columns = ["batch_size", "alpha", "learning_rate"]
df.to_csv("experiments.csv")
print(df)

Loading…
Cancel
Save