|
@ -6,7 +6,7 @@ import numpy as np # noqa: F401 |
|
|
from lightning_sdk import Machine, Studio # noqa: F401 |
|
|
from lightning_sdk import Machine, Studio # noqa: F401 |
|
|
|
|
|
|
|
|
# consistency of randomly sampled experiments. |
|
|
# consistency of randomly sampled experiments. |
|
|
seed(202419920921) |
|
|
seed(19920921) |
|
|
|
|
|
|
|
|
NUM_JOBS = 100 |
|
|
NUM_JOBS = 100 |
|
|
|
|
|
|
|
@ -28,8 +28,8 @@ alpha_values = [0] |
|
|
widths = [2**k for k in range(4, 13)] |
|
|
widths = [2**k for k in range(4, 13)] |
|
|
depths = [1, 2, 4, 8, 16] |
|
|
depths = [1, 2, 4, 8, 16] |
|
|
# learning_rate_values = [5e-4] |
|
|
# learning_rate_values = [5e-4] |
|
|
batch_size_values = [16, 64, 256] |
|
|
batch_size_values = [256] |
|
|
max_epochs_values = [100] |
|
|
max_epochs_values = [10] |
|
|
seeds = list(range(21, 1992)) |
|
|
seeds = list(range(21, 1992)) |
|
|
optimizers = [ |
|
|
optimizers = [ |
|
|
"Adagrad", |
|
|
"Adagrad", |
|
@ -71,10 +71,11 @@ python newmain.py fit \ |
|
|
--model.width {w} \ |
|
|
--model.width {w} \ |
|
|
--model.depth {d} \ |
|
|
--model.depth {d} \ |
|
|
--model.bias true \ |
|
|
--model.bias true \ |
|
|
|
|
|
--model.transform tanh \ |
|
|
--trainer.min_epochs 10 \ |
|
|
--trainer.min_epochs 10 \ |
|
|
--trainer.max_epochs {me} \ |
|
|
--trainer.max_epochs {me} \ |
|
|
--trainer.log_every_n_steps 3 \ |
|
|
--trainer.log_every_n_steps 3 \ |
|
|
--trainer.check_val_every_n_epoch 10 \ |
|
|
--trainer.check_val_every_n_epoch 1 \ |
|
|
--trainer.limit_val_batches 50 \ |
|
|
--trainer.limit_val_batches 50 \ |
|
|
--trainer.callbacks callbacks.SaveImageCallback \ |
|
|
--trainer.callbacks callbacks.SaveImageCallback \ |
|
|
--trainer.callbacks.init_args.final_dir out \ |
|
|
--trainer.callbacks.init_args.final_dir out \ |
|
|